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Preface to the Series
in Information and Computational Science

Since the 1970s, Science Press has published more than thirty volumes 1n its
series Monographs in Computational Methods. This series was established and led
by the late academician, Feng Kang, the founding director of the Computing
Center of the Chinese Academy of Sciences. The monograph series has provided
timely information of the frontier directions and latest research results 1n
computational mathematics. It has had great impact on young scientists and the
entire research community, and has played a very important role in the
development of computational mathematics in China.

To cope with these new scientific developments, the Ministry of Education of
the People’s Republic of China in 1998 combined several subjects, such as
computational mathematics, numerical algorithms, information science, and
operations research and optimal control, into a new discipline called Information
and Computational Science. As a result, Science Press also reorganized the
editorial board of the monograph series and changed its name to Series in
Information and Computational Science. The first editorial board meeting was held
in Beijing in September 2004, and it discussed the new objectives, and the
directions and contents of the new monograph series.

The aim of the new series is to present the state of the art in Information and
Computational Science to senior undergraduate and graduate students, as well as to
scientists working in these fields. Hence, the series will provide concrete and
systematic expositions of the advances in information and computational science,
encompassing also related interdisciplinary developments.

I would like to thank the previous editorial board members and assistants, and
all the mathematicians who have contributed significantly to the monograph series
on Computational Methods. As a result of their contributions the monograph series
achieved an outstanding reputation in the community. I sincerely wish that we will
extend this support to the new Series in Information and Computational Science, so
that the new series can equally enhance the scientific development in information
and computational science in this century.

Shi Zhongci
2005.7



Preface

In this book we introduce current developments and applications in
using iterative methods for solving block Toeplitz systems. The block
Toeplitz systems arise in a variety of applications in mathemadtics, scientific
computing and engineering, for instance, image restoration problems in
1mage processing; numerical differential equations and integral equations;
time series analysis and control theory. Krylov subspace methods and
multigrid methods are proposed. One of the main results of these iterative
methods is that the operation cost of solving a large class of mn x mn
block Toeplitz systems is only required O(mnlogmn) operations.

This book consists of twelve chapters. Various bibliographies are
placed at the end of the book. In Chapter 1, we survey some background
knowledge of matrix analysis and point Toeplitz iterative solvers that will
be used later to develop our block Toeplitz iterative solvers.

In Chapter 2 we study block circulant preconditioners for the solu-
tion of block system 7;,,u = b by the preconditioned conjugate gradient
(PCG) method where T}, is an m x m block Toeplitz matrix with n x n
Toeplitz blocks. The preconditioners cg)(Tmn), Eg)(TmR) and cg};(Tmn)
are the matrices that preserve the block structure of Tj,,. Specifically,
they are defined to be the minimizers of ||Tynn — CmnllF with Crup over
some special classes of matrices. We prove that if T, is positive def-
inite, then c(Fl,)(T mn)s ég)(Tmn) and cg’)F(T mn) are positive definite too.
We also show that they are good preconditioners for solving some special
block Toeplitz systems. Finally, we briefly discuss two other precondi-

tioners SE,E)F (Tnr) and rg},(T mn). The invertibility of the preconditioners

Sg%(Tmn) and rg};(Tmn) is studied.

In Chapter 3 block circulant preconditioners for block Toeplitz sys-
tems are studied from the viewpoint of kernels. We show that most of the
well known block circulant preconditioners can be derived from convolut-
Ing the generating functions of systems with some famous kernels. The
convergence analysis is also given.

In Chapter 4 we study the solutions of a block Toeplitz systems T'u = b
by the PCG method where T' = T(;, ®T (3 ®- - QT () with Toeplitz blocks
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Ty € R"™™, 4 =1,2,---,m. Two preconditioners C' and P are proposed.
The preconditioner C' 1s a matrix that preserves the tensor structure of
T and is close to T in Frobenius norm over a special class of matrices.
The preconditioner P is defined for ill conditioned problems. With a
fast algorithm, we show that both C' and P are good preconditioners for
solving block Toeplitz systems with tensor structure. Only O(mn™ log n)
operations are required for the solutions of preconditioned systems. The

inverse heat problem is also discussed.

In Chapter 5 we study the constrained and weighted least squares
problem

1
min §(b — Tz} W (b - Tx)

> > Wy, > 0 and TY =
(Tg), = -:T{Il;)g with Toeplitz blocks Ty € Rr*? [ =1,---,k. It is well

is problem can be solved by solving the following linear

where W = diag(w, - ,wm) with wy > ---

known that t
system

MM+ Tx =0,

T\ =0,

where M = W~1, We use the PCG method with circulant-like precondi-
tioner for solving the system and we obtain a fast convergence rate.

In Chapter 6 Werstudy the solutions of ill conditioned block Toeplitz
systems Tinnu = b where T;,, are generated by a function f(z,y) > 0.
Two important theorems [77], which give the relations between the val-
ues of f(z,y) and the eigenvalues of T},,, are proposed. Usually, the
convergence rate of the conjugate gradient method for solving ill condi-
tioned block Toeplitz systems is slow. To deal with such kind of prob-
lem, a block {w}-circulant preconditioner is proposed. We show that the
block {w}-circulant preconditioner can work efficiently for ill conditioned

block Toeplitz systems. A numerical comparison between the block {w}-

(2)

circulant preconditioner and the preconditioner ¢ 7 (Tmn) is also given.

In Chapter 7 we first study block band Toeplitz preconditioners for the
solutions of ill conditioned block Toeplitz systems Ty,nu = b by the PCG
method. Here T,,, are assumed to be generated by a function f(z,y) > 0.
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The generating function g(x,y) of the block band Toeplitz precondition-
ers 1s a trigonometric polynomial of fixed degree and is determined by
minimizing |||{(f — ¢)/fll|cc. Remez algorithm is proposed to construct
the preconditioners. We prove that the condition number of the precon-
ditioned system is O(1). A priori bound on the number of iterations for
convergence 1s obtained. Finally, we briefly discuss the preconditioners
based on some well known fast transforms.

In Chapter 8 we study the solutions of ill conditioned block Toeplitz
systems T,,,u = b by multigrid methods (MGMs). For a class of block
Toeplitz matrices, we show that the convergence factor of the two-grid
method 1s uniformly bounded below 1 and independent of m and n, and
the full MGM has a convergence factor depending only on the number of
levels. The cost per iteration for the MGM is of O(mn log mn) operations.
Numerical results are given to explain the convergence rate.

In Chapter 9 we first review some results related to numerical solu-
tions of elliptic boundary value problems. We then consider linear systems
arising from implicit time discretizations and finite difference space dis-
cretizations of second-order hyperbolic equations in 2-dimensional space.
We propose and analyse the use of block circulant preconditioners for the
solutions of linear systems by the PCG method. For second-order hyper-
bolic equations with given initial and Dirichlet boundary conditions, we
prove that the condition number of the preconditioned system is of O(«)
or O(m), where « is the grid ratio between the time and space steps and
m 1S the number of interior grid points in each direction. The results
are extended to parabolic equations. Numerical experiments also indicate
that the preconditioned systems exhibit favorable clustering of eigenvalues
that leads to a fast convergence rate. Block preconditioners based on the
fast sine transform are discussed for discretized systems of second-order
partial differential equations in 3-dimensional space.

In Chapter 10 block preconditioners based on the fast sine transform
are proposed for solving non-symmetric and non-diagonally dominant lin-
ear systems that arise from discretizations of first-order partial differential
equations. We prove that if the generalized minimal residual (GMRES)
method 1s applied to solving the preconditioned systems, the asymptotic
convergence factor of the method is independent of the mesh size and
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depends only on the grid ratio between the time and space steps. We
compare the convergence rate of our preconditioned system with the one
that preconditioned by the semi-Toeplitz preconditioner. We show that
our preconditioned systems have a smaller asymptotic convergence factor
and numerical experiments indicate that our preconditioned systems have

a much faster convergence rate.

In Chapter 11 the block circulant preconditioner 59) (M) is proposed
for solving linear systems arising from numerical methods for ordinary dif-
ferential equations (ODEs). We use linear multistep methods to discretize
ODEs. These implicit numerical methods for solving ODEs require the
solutions of non-symmetric, large and sparse linear systems at each inte-
gration step. Hence, the GMRES method is used. We show that when
some stable boundary value methods are used to discretize ODEs, the pre-
conditioner §%11) (M) is invertible and the eigenvalues of the preconditioned
system are clustered around 1. When the GMRES method is applied to
solving these preconditioned systems, we have a fast convergence rate.
Numerical results are given to illustrate the effectiveness of thc method.
An algorithm for solving differential algebraic equations is also given.

In Chapter 12 we briefly study image restoration problems in image
processing. The image of an object can be modeled as

o(.6)= [ ) f_ " 4(E, 650, 8)f (, B)dads + n(E, )

where g(§,0) is the degraded image, f(«, () is the orginal image, (£, d)
rcpresents an additive noise. The image restoration problem is that given
the observed image g, compute an approximation to the original image f.
The regularized PCG least squares method with the preconditioners based
on some fast transforms is proposed for solving linear systems arising from
image restoration problems.

This book contains main parts of my research work in the past twelve
years. Some research results are joint work with Professor Raymond H.F.
Chan of the Department of Mathematics, Chinese University of Hong
Kong; Professor Q.S. Chang of the Institute of Applied Mathematics,
Chinese Academy of Sciences; Dr. Michael K.P. Ng of the Department of
Mathematics, University of Hong Kong; Dr. H.W. Sun of the Department
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of Mathematics and Physics, Guangdong University of Technology; and
my students Miss K.I. Kou and Mr. S.L. Lei of the Faculty of Science
and Technology, University of Macau. I wish to express my sincere grat-
itude to my former Ph.D supervisor, Professor Raymond H.F. Chan, for
leading me to this interesting area of fast iterative Toeplitz solvers and for
his continual guidance, constant encouragement, long standing friendship,
financial support and help. I am indebted to Professor Tony F. Chan of
the Department of Mathematics, University of California, Los Angeles,
for his enlightening suggestions and comments, from which I benefited a
great deal during my Ph.D studies. 1 would like to thank my friends Pro-
fessor Z.C. Shi, Dr. C.M. Cheng, Dr. C.K. Wong and Dr. M.C. Yeung for
their many helpful discussions and suggestions. Thanks are also due to
my parents for their encouraging and financial support. Finally, 1 would
like to express my appreciation to my dear wife, Kathy, who eased many
burdens and provided an environment and the encouragement essential to
the completion of this book.

The publication of the book is supported in part by the research grants
No. RG009/98-995/JXQ/FST, No. RG010/99-00S/JXQ/FST and No.
RG026/00-01S/JXQ/FST from University of Macau.
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Chapter 1
Introduction

In this chapter we first introduce some background knowledge of matrix
analysis which will be used throughout the book. We then give a brief
survey of current developments in using preconditioned conjugate gradient

(PCG) methods for solving Toeplitz systems in the point case.

1.1 Background

In this section an overview of the relevant concepts in matrix analysis
1s given. The material contained here will be helpful in developing our
theory in later chapters.

1.1.1 Symmetric matrix, norms and tensor

A matrix A € R™*" is said to be a symmetric matrix if AT = A where ‘7"
denotes the transposition. Real symmetric matrices have many elegant
and important properties, see [95, 100], and here we present only several

classical results that will be used later.

Theorem 1.1 (Spectral Theorem) Let A € RPX™ be gwen. Then A 1is

symmetric if and only if there exist an orthogonal matriz (Q € R**" and
a diagonal matriz A € R™™™ such that A = QAQ?.

We recall that a matrix M € R"*" is called orthogonal if M~1 = M7.
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Theorem 1.2 (Cauchy’s Interlace Theorem) Let A € R**™ be a

symmetric matriz with eigenvalues

AM <A< - <A,

and let
1 < o < -0 < Up—y

be the eigenvalues of a principal submatrixz of A of order n — 1. Then

Theorem 1.3 (Weyl’s Theorem) Let A, E € R"*" be symmetric ma-
trices and let the eigenvalues A (A), A (F) and A\i(A + E) be arranged in
increasing order. Then for each k =1,2,---,n, we have

Ae(A) + AL(E) < A(A + E) < Me(A4) + M (E).

Theorem 1.4 (Courant—Fischer’s Minimax Theorem) Let A € R**"

be a symmetric matriz with eigenvalues
AL S A2 << A,

and let k be a given integer with 1 < k < n. Then

, ' Ax , ! Ax
A = min max - T = min max —=——.
dimAX =k 0£zeX T+ I dimX=n—k+10#£x€X T X

In particular, for the smallest and largest eigenvalues, we have

T Az T Ax
A1 = min o and A, = max T
A0 T+ X *x#0 T X

The results of Spectral Theorem, Cauchy’s Interlace Theorem, Weyl’s
Theorem and Courant—Fischer’s Minimax Theorem can be extended to
the case of Hermitian matrices. We remark that a matrix 4 € C**" is
sald to be a Hermitian matrix if A* = A where ‘*’ denotes the conjugate
transposition. For any arbitrary A € C**"™, it is possible to decompose A
into an ‘almost diagonal form’ — the Jordan canonical form.
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Theorem 1.5 (Jordan’s Decomposition Theorem) If A € C**",
then there exists an invertible matriz X € C**"™ such that

XYAX = J = diag(J1, Jo, -+ -, Ji)

which s called the Jordan canonical form of A, where diag(-) denotes the
diagonal matriz and

A1 0 ---0
0 M\ 1
Ji = 0 0 | € CH™ ™,
.1
0 .- 0 \

fori1 =1,2,---,k, are called Jordan blocks with n1 +--- 4+ np = n. The
Jordan canonical form of A is unique up to the permutation of diagonal
Jordan blocks. The eigenvalues \;,©1 = 1,2,--- k., are not necessarily dis-
tinct. If A € R™*™ with only real eigenvalues, then the matriz X can be
taken to be real. |

Let
r = (.’El,.’Eg,- . ,:CR)T e C".

A vector norm on C" is a function that assigns to each £ € C" a real
number ||z||, called the norm of x, such that the following three properties
are satisfied for all z,y € C" and all o € C:

(i) ||z|| > 0 if z # 0 and 0| = 0;
(ii) |laz| = |al|z|);
(iii) [z + y|| < ||| + |yll.

A useful class of vector norms is the p-norm defined by

el = (Z |:cz-|P) p
=1

The following p-norms are the most commonly used norms in practice:

n n 1/2
lzly =z, Nzll2 = (Z |~’C7;l2) NIzl = max i,

=1 i=1
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Cauchy—-Schwarz’s inequality concerning || - [|2 is given as follows,

2] < llzll2yll2

for z, y € C*. A very important property of vector norms on C" is that
all vector norms on C* are equivalent, i.e., if ||- ||, and ||-||g are two norms
on C", then there exist two positive constants ¢; and ¢p such that

ciljz]lo < llzllp < coflxflo

for all x € C". For example, if x € C*, then we have

izll2 < [lzlly < Vnliz]l2,

1zlloo < llzllz < Vnllzlloo

and
|Zlleo < [IZ]|1 < nf|2|co-

Let
A= (ai:j)?;jzl e C" ™.

We now turn our attention to matrix norms. A matrix norm is a function
that assigns to each A € C"*™ a real number || A||, called the norm of A,
such that the following four properties are satisfied for all A, B € Crxn
and all o € C:

(i) )|Al]} > 0 if A # 0 and |j0]| = 0;

(i) [jadl| = |af||Al|;

(iii) 1A+ B < || 4]l + |1 B];

(iv) |AB] < [|A]|IB]|
For every vector norm, we can define a matrix norm in a natural way:.

Given the vector norm || - ||, the matrix norm induced by || - ||,, is defined
by

Az,
IAlls = max A2l
z#0 quv

The most important matrix norms are the matrix p-norms induced by the
vector p-norms for p =1, 2, 0o:

T

4l = max ) lassls IAll2 = o (4), 4l = max D loisl
1= j=
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where opax(A4) denotes the largest singular value of A, see [38]. The

Frobenius norm is defined by

0 1/2
JAr={ DD lassl®
1=1 2=1
One of the most important properties of || - ||2 and || - || is that for any

unitary matrices () and Z,

|Allz = {|QAZ||2

and

|Allr = |QAZ]|F.

We recall that a matrix M € C**" is called unitary if M~ = M*.
Let A= (a;;) € C"™*™ and B € CP*9, The mp X ng matrix
a1nB a12B --- a1, B

ang (1228 e a9 B
AR B = §

am1B ame B - - amn B

is called the tensor product of A and B.

The basic properties of the tensor product are summarized in the fol-
lowing theorem.

Theorem 1.6 Let A € C**™ and B € CP*9. Then we have,
(i) rank(A @ B) = rank(A) - rank(B);
(ii) (A® B)* = A*® B*;
(ili) (A® B)(C ® D) = (AC) ® (BD), where C € C***, D € CI*7;
(iv) If both A and B are invertible, then A ® B is also invertible and

(AB)'=A19 B
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1.1.2 Condition number and error estimates

When we solve a linear system Az = b, a good measurement, which can
tell us how sensitive the computed solution is to the input perturbations,
is needed. The condition number of matrix is then defined. It relates the
perturbations in & to the perturbations in A and b.

Definition 1.1 Let || - || be any p-norm of matriz and A be an invertible
matriz. The condition number of A is defined as follows,

k(A) = [[AIATH]. (1.1)
Obviously, the condition number depends on the matrix norm used. Since
L= ||| = |A- A7 <l A - 1A

where [ is the identity matrix, it follows that x(A) > 1. When «(A) is
small, then A is sald to be well conditioned, whereas if k(A) is large, then
A 1s said to be ill conditioned.

Let £ be an approximation of the exact solution z of Ax = b. The
error vector is defined as follows,

e=1x— I,
1.e.,
r=2a+e. (1.2)
The absolute error is given by
lell = ||z — &]

for any vector norm. If x # 0, then the relative error is defined by

ell _ |z - &

x (Ed|

We have by substituting (1.2) into Ax = b,

A(Z +e) = A% + Ae = b.

Therefore,
A% =b— Ae = b.



