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Preface to the Second Edition

The main change in this edition is the inclusion of exercises with answers
and hints. This is meant to emphasize that this volume has been written
as a general course in modern analysis on a graduate student level
and not only as the beginning of a specialized course in partial differen-
tial equations. In particular, it could also serve as an introduction to
harmonic analysis. Exercises are given primarily to the sections of gen-
eral interest; there are none to the last two chapters.

Most of the exercises are just routine problems meant to give some
familiarity with standard use of the tools introduced in the text. Others
are extensions of the theory presented there. As a rule rather complete
though brief solutions are then given in the answers and hints.

To a large extent the exercises have been taken over from courses
or examinations given by Anders Melin or myself at the University
of Lund. I am grateful to Anders Melin for letting me use the problems
originating from him and for numerous valuable comments on this
collection.

As in the revised printing of Volume II, a number of minor flaws
have also been corrected in this edition. Many of these have been called
to my attention by the Russian translators of the first edition, and
I wish to thank them for our excellent collaboration.

Lund, October 1989 Lars Hormander



Preface

In 1963 my book entitled “Linear partial differential operators” was
published in the Grundlehren series. Some parts of it have aged well
but others have been made obsolete for quite some time by techniques
using pseudo-differential and Fourier integral operators. The rapid de-
velopment has made it difficult to bring the book up to date. Howev-
er, the new methods seem to have matured enough now to make an
attempt worth while.

The progress in the theory of linear partial differential equations
during the past 30 years owes much to the theory of distributions
created by Laurent Schwartz at the end of the 1940’s. It summed up a
great deal of the experience accumulated in the study of partial differ-
ential equations up to that time, and it has provided an ideal frame-
work for later developments. “Linear partial differential operators” be-
gan with a brief summary of distribution theory for this was still un-
familiar to many analysts 20 years ago. The presentation then pro-
ceeded directly to the most general results available on partial differ-
ential operators. Thus the reader was expected to have some prior fa-
miliarity with the classical theory although it was not appealed to ex-
plicitly. Today it may no longer be necessary to include basic distribu-
tion theory but it does not seem reasonable to assume a classical
background in the theory of partial differential equations since mod-
ern treatments are rare. Now the techniques developed in the study
of singularities of solutions of differential equations make it possible
to regard a fair amount of this material as consequences of extensions
of distribution theory. Rather than omitting distribution theory I have
therefore decided to make the first volume of this book a greatly ex-
panded treatment of it. The title has been modified so that it indicates
the general analytical contents of this volume. Special emphasis is put
on Fourier analysis, particularly results related to the stationary phase
method and Fourier analysis of singularities. The theory is illustrated
throughout with examples taken from the theory of partial differential
equations. These scattered examples should give a sufficient know-
ledge of the classical theory to serve as an introduction to the system-
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atic study in the later volumes. Volume [ should also be a useful in-
troduction to harmonic analysis. A chapter on hyperfunctions at the
end is intended to give an introduction in the spirit of Schwartz distri-
butions to this subject and to the analytic theory of partial differential
equations. The great progress in this area due primarily to the school
of Sato is beyond the scope of this book, however.

The second and the third volumes will be devoted to the theory of
differential equations with constant and with variable coefficients re-
spectively. Their prefaces will describe their contents in greater detail.
Volume I will appear almost simultaneously with Volume I, and Volume
IIT will hopefully be published not much more than two years later.

In a work of this kind it is not easy to provide adequate refer-
ences. Many ideas and methods have evolved slowly for centuries, and
it is a task for a historian of mathematics to uncover the development
completely. Also the more recent history provides of course consider-
able difficulties in establishing priorities correctly, and these problems
tend to be emotionally charged. All this makes it tempting to omit ref-
erences altogether. However, rather than doing so 1 have chosen to
give at the end of each chapter a number of references indicating re-
cent sources for the material presented or closely related topics. Some
references to the earlier literature are also given. I hope this will be
helpful to the reader interested in examining the background of the
results presented, and I also hope to be informed when my references
are found quite inadequate so that they can be improved in a later
edition.

Many colleagues and students have helped to improve this book,
and I should like to thank them all. The discussion of the analytic
wave front sets owes much to remarks by Louis Boutet de Monvel, Pierre
Schapira and Johannes Sjostrand. A large part of the manuscript was
read and commented on by Anders Melin and Ragnar Sigurdsson in
Lund, and Professor Wang Rou-hwai of Jilin University has read a
large part of the proofs. The detailed and constructive criticism given
by the participants in a seminar on the book conducted by Gerd
Grubb at the University of Copenhagen has been a very great help.
Niels Jorgen Kokholm took very active part in the seminar and has
also read all the proofs. In doing so he has found a number of mis-
takes and suggested many improvements. His help has been invalu-
able to me.

Finally, I wish to express my gratitude to the Springer Verlag for
encouraging me over a period of years to undertake this project and
for first rate and patient technical help in its execution.

Lund, January 1983 Lars Hormander
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Introduction

In differential calculus one encounters immediately the unpleasant fact
that not every function is differentiable. The purpose of distribution
theory is to remedy this flaw; indeed, the space of distributions is essen-
tially the smallest extension of the space of continuous functions where
differentiation is always well defined. Perhaps it is therefore self evident
that it is desirable to make such an extension, but let us anyway discuss
some examples of how awkward it is not to be allowed to differentiate.
Our first example is the Fourier transformation which will be
studied in Chapter VII. If v is an integrable function on the real line
then the Fourier transform Fv is the continuous function defined by

(Fo)(&)= T e~ *y(x)dx, ¢eR.

It has the important property that
n F(Dv)=MFv, F(Mv)=—-DFv

whenever both sides are defined; here Dv(x)= —idv/dx and Mu(x)
=xv(x). In the first formula the multiplication operator M is always
well defined so the same ought to be true for D. Incidentally the
second formula (1) then suggests that one should also define F for
functions of polynomial increase.

Next we shall examine some examples from the theory of partial
differential equations which also show the need for a more general
definition of derivatives. Classical solutions of the Laplace equation

2 d%u/0x?+0%u/dy*=0
or the wave equation (in two variables)
(3) 0%v/ox? —3%v/3y* =0

are twice continuously differentiable functions satisfying the equations
everywhere. It is easily shown that uniform limits of classical solutions
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of the Laplace equation are classical solutions. On the other hand, the
classical solutions of the wave equation are all functions of the form

4 v(x, Y)=f(x+y)+g(x—y)

with twice continuously differentiable f and g, and they have as
uniform limits all functions of the form (4) with f and g continuous.
All such functions ought therefore to be recognized as solutions of (3)
so the definition of a classical solution is too restrictive.

Let us now consider the corresponding inhomogeneous equations

5) 82u/ox? + 0*u/dy* =F,
©6) 0%v/dx*—0%*v)0y*=F

where F is a continuous function vanishing outside a bounded set. If
F is continuously differentiable a solution of (6) is given by

(7 vix,y)= ff  —F( n)dédny/2.

. n—-y+lx-¢l<0
However, (7) defines a continuously differentiable function v even if F
is just continuous. Clearly we must accept v as a solution of (6) even if
second order derivatives do not exist. Similarly (5) has the classical
solution

(8) u(x, y)=(4m)~"* [[ F(§, ) log((x — &)* +(y—n)?) d&dy

provided that F is continuously differentiable. Again (8) defines a
continuously differentiable function u even if F is just continuous, and
we should be able to accept u as a solution of (5) also in that case.

The difficulties which are illustrated in their simplest form by the
preceding examples were eliminated already by the concept of weak
solution which preceded distribution theory. The idea is to rewrite the
equation considered in a form where the unknown function u is no
longer differentiated. Consider as an example the equation (6). If u is a
classical solution it follows that

©y Jf(@*ufox*—dujoy?) pdxdy={[F pdxdy

for every continuous function ¢ vanishing outside a compact, that is,
closed and bounded, set. Conversely, if (6) is fulfilled for all such ¢
which are say twice continuously differentiable then (6) is fulfilled. In
fact, if (6) were not satisfied at a point (xo,¥,) we could take ¢ non-
negative and O outside a small neighborhood of (x,, y,) and conclude
that (6)' is not fulfilled either. For such “test functions” ¢ we can
integrate by parts twice in the left-hand side of (6) which gives the
equivalent formula
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©y §f u(@? ¢/ox* — 52 ¢/dy*)dxdy=[[ F pdxdy.

Summing up, if u is twice continuously differentiable then (6) is
equivalent to the validity of (6)” for all test functions ¢, that is, twice
continuously differentiable functions ¢ vanishing outside a compact
set. However, (6)” has a meaning if u is just continuous, and one calls
u a weak solution of (6) when (6)" is valid.! It is easily verified that
the flaws of the classical solutions pointed out above disappear 1f one
accepts weak continuous solutions.

The function F is uniquely determined by u when (6)" is fulfilled.
However, for an arbitrary continuous function u there may be no
continuous function F such that

)] L(¢)=[f u(0*¢p/ox*—0*¢/oy*)dxdy
can be written in the form
(10) L(¢)=([F pdxdy.

Distribution theory goes beyond the definition of weak solutions by
accepting for study expressions L of the form (9) even when they are
not of the form (10). A distribution is any such expression which
depends linearly on a test function ¢ (and its derivatives). When it can
be written in the form (10) it is identified with the function F, It turns
out that one can extend the basic operations of calculus to distri-
butions; in particular differentiation is always defined.

Let us also consider some examples of similar expressions occur-
ring in physics. First consider a point mass with weight 1 at a point a
on the real axis. This can be considered as a limiting case of a mass
distribution with uniform density 1/2¢ in the interval (a—e, a+¢) as
£¢—0. The corresponding functional is

a+e

L(§)= | ¢(x)dx/2e.

When ¢ -0 we have L(¢)— ¢(a), so L(¢)=p(a) should represent the
unit mass at a. This interpretation is of course standard in measure
theory.

Next we consider a dipole at 0 with moment 1. This may be
defined as the limit of the pointmass 1/ at 6 and —1/5 at 0 as § —0.
Thus we must consider the limit of the functional

M,($)=5""¢(8)~5""¢(0)

' Note that differential equations appear naturally in a weak form in the calculus of

variations.
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when 6—0, which is M(¢)=¢’(0). This functional is therefore the
appropriate description of the dipole.

It is possible to pursue this development and define distributions
as limits of functionals of the form (10). However, we shall not do so
but rather follow the path suggested by the definition of weak de-
rivatives. This is the original definition of Schwartz and it has the
advantage of avoiding the question which limits define the same
distribution.

The formal definition of distributions is given in Chapter II after
properties of test functions have been discussed at some length in Chap-
ter I. Differentiation of distributions is then studied in Chapter III; it
is shown in Section 4.4 that we have indeed obtained a minimal exten-
sion of the space of continuous functions where differentiation is always
possible. In Chapters IV, V, VI we extend convolution, direct product
and composition from functions to distributions. Chapter VII is devot-
ed to Fourier analysis of functions and distributions. The choice of
material differs a great deal from standard texts since it is dictated
by what is required in the later parts. The method of stationary phase
is given a particularly thorough treatment. In Chapter VIII we discuss
the Fourier analysis of singularities of distributions. This turns out
to be a local problem so it can be discussed also for distributions
on manifolds. The phrase “singularity” above is deliberately vague;
in fact we shall consider singularities both from a C® and from an
analytic point of view. The results lead to important extensions of the
distribution theory in Chapters III-V1. For instance, one can define
the restriction of a distribution u to a submanifold Y if u has no singular-
ity at a normal to Y. Many applications to regularity and uniqueness
of solutions of differential equations are also given. The analytic theory
is continued in Chapter IX which is devoted to hyperfunctions. These
are defined just as distributions but with real analytic test functions.
The main new difficulty stems from the fact that there are no such
test functions vanishing outside a compact set.



Chapter 1. Test Functions

Summary

As indicated in the introduction one must work consistently with
smooth “test functions™ in the theory of distributions. In this chapter
we have collected the basic facts that one needs to know about such
functions. As an introduction a brief summary of differential calculus
is given in Section 1.1. It is written with a reader in mind who has
seen the material before but perhaps with different emphasis and
different notation. The reader who finds the presentation hard to
follow is recommended to study first a more thorough modern treat-
ment of differential calculus in several variables, and experienced
readers should proceed directly to Section 1.2. In addition to the basic
indispensible facts we have included in Sections 1.3 and 1.4 some
more refined constructions which will be useful some time in this
book but are not important for the main theme. The reader in a hurry
may therefore wish to omit Section 1.3 from Theorem 1.3.5 on and
also Theorem 1.4.2, Lemma 1.4.3 and the rest of Section 1.4 from
Theorem 1.4.6 on.

1.1. A Review of Differential Calculus

At first we shall consider functions of a single real variable but permit
values in a Banach space. Thus let I be an open interval on the real

line R and let V be a Banach space with norm denoted || |. A map f:
I -V is called differentiable at xel, with derivative f'(x)eV, if

(1.1.1) I(f(x+h)—f(x)/h—f'(x)| -0 when h—>0.

We can write (1.1.1) in the equivalent form

(L.1.1y I f(x+h)—f(x)—f'(x)h]|=0(h) when h—0.

If V=R" and we write f=(f,,..., f) then differentiability of f is of
course equivalent to differentiability of each component f;. For vector
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valued functions the mean value theorem must be replaced by the
following

Theorem 1.1.1. If f: I -V is differentiable at every point in I, then
(LL2) S-S Sly—xIsup{lf (x+t(y—x)Il, 05t=1}; x,pel.

Proof. Let M >sup{|| f'(x+t(y—x))l|,0=<t<1} and set
E={;0=t=1, || f(x+t(y—x))=f(x)| £ Mt|x—yl}.

E is closed since f is continuous, and O€E, so E has a largest element
s. If t>s and t—s is sufficiently small we have

1S G+ ey —x)—f (x|
SISty —x) =S (x+s(y =D + | f (x + 5y = %) = f ()]
SM|(t—s)(y—x)|+ Msly —x|=Mtly —x|.

Hence s=1 which proves the theorem.

Remark. If f is just continuous in [x,y] and differentiable in the
interior we obtain (1.1.2) with supremum for 0<t<1 as a limit of
(1.1.2) applied to smaller intervals. If veV an application of (1.1.2) to
x— f(x)—xv gives

(1L12Y 1) —f(x)—v(y—x)l §1y—>€|osup1 1S (x+ty—x)—v]

<tl<
which is often more useful, particularly with v=f"(x).
Corollary 1.1.2. Let f be continuous in I and differentiable outside a

closed subset F where f=0. If xeF and f'(y)—0 when I~F3y—x,
then f’(x) exists and is equal to 0.

Proof. If yeF then f(y)—f(x)=0. Otherwise let z be the point in
Fn[x,y] closest to y. Then (1.1.2) gives

IS =fN=1fO)—-fI ély—ZIOSUP1 1/ (z+t(y—2)l
which is o(ly —x[) as y —» x.

Example 1.1.3. If P is a polynomial and f(x)=P(1/x)e”'* x>0, f(x)
=0, x£0, then f is continuous. The derivative for x=0 is of the same
form with P(1/x) replaced by (P(1/x)— P'(1/x))/x? so f'(0) exists and is
equal to 0.



