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General Preface

This three-volume series grew out of a three-quarter course in probability,
statistics, and stochastic processes taught for a number of years at UCLA. We felt
a need for a series of books that would treat these subjects in a way that is well
coordinated, but which would also give adequate emphasis to each subject as bemg
interesting and useful on its own merits.

The first volume, Introduction to Probability Theory, presents the fundamental
ideas of probability theory and also prepares the student both for courses in
statistics and for further study in probability theory, including stochastic processes.

The second volume, Introduction to Statistical Theory, develops the basic
theory of mathematical statistics in a systematic, unified manner. Together, the
first two volumes contain the material that is often covered in a two-semester course
in mathematical statistics.

The third volume, Introduction te Stochastic Processes, treats Markov chains,
Poisson processes, birth and death processes, Gaussian processes, Brownian
motion, and processes defined-in terms of Brownian motion by means of ele-
mentary stochastic differential equations.



PfefaCe

This volume is intended to serve as a text for a one-quarter or one-semester
course in probability theory at the junior-senior level. The material has been
designed to give the reader adequate preparation for either a course in statistics or
further study in probability theory and stochastic processes. The prerequisite for
this volume is a course in elementary calculus that includes multiple integration.

‘We have endeavored to present only the more important concepts of probability
theory. We have attempted to explain these concepts and indicate their usefulness
through discussion, examples, and exercises. Sufficient detail has been included in
the examples so that the student can be expected to read these on his own, thereby
leaving the instructor more time to cover the essential ideas and work a number of
exercises in class.

At the conclusion of each chapter there are a large number of exercises, arranged
according to the order in which the relevant material was introduced in the text.
Some of these exercises are of a routine nature, while others develop ideas intro-
duced in the text a little further or in a slightly different direction. The more difficult
problems are supplied with hints. Answers, when not indicated in the problems
themselves, are given at the end of the book.

Although most of the subject matter in this volume is essential for further study
in probability and statistics, some optional material has been included to provide
for greater flexibility. These optional sections are indicated by an asterisk. The
material in Section 6.2.2 is needed only for Section 6.6; neither section is required
- for this volume, but both are needed in Introduction to Statistical Theory.

The material of Section 6.7 is used only in proving Theorem | of Chapter 9 in this
volume and Theorem 1 of Chapter 5 in Introduction to Statistical Theory. The
- contents of Chapters 8 and 9 are optional;; Chapter 9 does not depend on Chapter 8.
We wish to thank our several colleagues who read over the original manuscript
and made suggestions that resulted in significant improvements. We also would
like to thank Neil Weiss and Luis Gorostiza for obtaining answers to all the
exercises and Mrs. Ruth Goldstein for her excellent job of typing.
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1 Probability Spaces

Probability theory is the branch of mathematics that is concerned with random ~—
(or chance) phenomena. It has attracted people to its study both because of its
intrinsic interest and its successful applications to many areas within the physical,
biological, and social sciences, in engineering, and in the business world.

Many phenomena have the property that their repeated observation under a
specified set of conditions invariably leads to the same outcome. For example, if
a ball initially at rest is dropped from a height of d feet through an evacuated
cylinder, it will invariably fall to the ground in 7 = V/2d|g seconds, where
g = 32 fifsec? is the constant acceleration due to gravity. There are other
phenomena whose repeated observation under a specified set of conditions does not
always lead to the same outcome. A familiar example of this type is the tossing of a
coin. If a coin is tossed 1000 times the occurrences of heads and tails alternate in a
seemingly erratic and unpredictable manner. It is such phenomena that we think
of as being random and which are the object of our investigation.

At first glance it might seem impossible to make any worthwhile statements
about such random phenomeéna, but this is not so. Experience has shown that

' many nondeterministic phenomena exhibit a statistical regularity that makes them
subject to study. This may be illustrated by considering coin tossing again. For
-any given toss of the coin we can make no nontrivial prediction, but observations
show that for a large number of tosses the proportion of heads seems to fluctuate
around some fixed number p between 0 and 1 (p being very near 1/2 unless the coin
is severely unbalanced). It appears as if the proportion of heads in n tosses would
converge to p if we let n approach infinity. We think of this limiting proportion p
" as the “probability” that the coin will land heads up in a single toss. '
~More generally the statement that a certain experimental outcome has probability
unbemtelputed'asmeamngthatnftheexpenmenturepeatedahrgenumberol‘
_times, that outcome would be observed “about” 100p percent of the time. This
5 interpretation of probabilities is called the relative frequency interpretation. It is
hynatmdinmyapplwuuomofprobablmyﬂwoqtomdwoﬂdpmblems.
Aspiscu.lly to those involving the physical sciences, but it often’ seems quite

uhﬁcn!. How, for example, could we give a relative ﬁequencynnﬁtp!mnon to
v »“ ' .
; : 5 ;



2 ’ Probability Spaces

the probability that a given newborn baby will live at least 70 years? Various
attempts have been made, none of them totally acceptable, to give alternative
interpretations to such probability statements.

For the mathematical theory of probability the interpretation of probabilities
is irrelevant, just as in geometry the interpretation of points, lines, and planes is
irrelevant. We will use the relative frequency interpretation of probabilities only as
an intuitive motivation for the definitions and theorems we will be developing
throughout the book.

1.1. Examples of random phenomena

In this section we will discuss two simple examples of random phe-
nomena in order to motivate the formal structure of the theory.

Example1. A box has s balls, labeled 1,2,...,s but otherwise
identical. Consider the following experiment. The balls are mixed up well
in the box and a person reaches into the box and draws a ball. The
number of the ball is noted and the ball is returned to the box. The out-
come of the experiment is the number on the ball selected. About this
experiment we can make no nontrivial prediction.

Suppose we repeat the above experiment n times. Let N, (k) denote the
number of times the ball labeled &k was drawn during these # trials of the
experiment. Assume that we had, say, s = 3 balls and n = 20 trials.
The outcomes of these 20 trials could be described by listing the numbers
which appeared in the order they were ebserved, A typical result might be

1,1,3,214,2,2323,321,23,3,1,322
in which case
Nzo(l} = 5 !"2()(2} = 8, aﬂd :\"20(3} = q
The relative frequencies (i.e., proportion of times) of the outcomes 1, 2,
and 3 are then
Nao(1)
20

As the number of trials gets large we would expect the relative fre-
quencies N(1)/i, ..., N(s)/n to settle down to some fixed numbers
Dis D2+ -+ » Ps (Which according to our intuition in this case should all
be 1/s). ‘

By the relative frequency interpretation, the number p, would be called

the probability that the ith ball will be drawn when the experiment is
performed once (F = 1,2,.. ., 9).

=25  N20@)_ 49 Gpg 0 D2O) _ a4
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We will now make a mathematical model of the experiment of drawing
a ball from the box. To do this, we first take a set Q having s pomts that
we place into one-to-one correspondence with the possible outcomes of
the experiment. In this correspondence exactly one point of Q will be
associated with the outcome that the ball labeled % is selected. Call that
point w,. To the point w, we associate the number p, = 1/s and call it the
probability of w,. We observe at once that 0 < p, < 1 and that
Pttt p=1

Suppose now that in addition to being numbered from 1 to s the first r
balls are colored red and the remaining s — r are colored black. We
perform the experiment as before, but now we are only interested in the
color of the ball drawn and not its number. A moment’s thought shows
that the relative frequency of red balls drawn among n repetitions of the .
experiment is just the sum of the relative frequencies N, (k)/n over those
values of k that correspond to a red ball. We would expect, and expe-
rience shows, that for large n this relative frequency should settle down to
some fixed number. Since for large » the relative frequencies N,(k)/n are
expected to be close to p, = 1/s, we would “anticipate that the relative
frequency of red balls would be close to 7/s. Again experience verifies this.
According to the relative frequency interpretation, we would then call r/s
the probability of obtaining a red ball.

Let us see how we can reflect this fact in our model. Let 4 be the subset
of Q consisting of those points @, such that ball &k is red. Then 4 has
exactly r points. We call 4 an event. More generally, in this situation we
will call any subset B of {2 an event. To say the event B occurs means tha
the outcome of the experiment is represented by some point in B,

Let 4 and B be two events. Recall that the union of 4 and B, 4 U E,
is the set of all points @ € Q such that w € 4 or w € B. Now the points in
£} are in correspondence with the outcomes of our experiment. The cvent
A occurs if the experiment yields an outcome that is represented by some
point in A4, and similarly the event B occurs if the outcome of the experi-
ment is represented by some point in B. The set 4 U B then represents
the fact that the event 4 occurs or the event B occurs. Similarly the inter-
section 4 N B of A and B cousists of all points that are in both 4 and B.
Thus if we A ~ B then w € A and w € B so A N B represents the fact
that both the events 4 and B occur. The complement A° (or 4") of 4 is the
set of points in £ that are not in 4. The evert 4 does not occur if the ex-
periment yields an outcome represented by a point in A°.

Diagrammatically, if 4 and B are represented by the indicated regions
in anure la, then 4 U B, A n B, and A are represented by the shaded
regions in Figures 1b, Ic, and 1d, respectively. ;
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To illustrate these concepts let 4 be the event “red ball selected”” and
let B be the event ‘“‘even-numbered ball selected.” Then the union 4 U B
is the event that either a red ball or an even-numbered ball was selected.
The intersection 4 N B is the event “red even-numbered ball selected.”
The event A€ occurs if a red ball was not selected.

‘We now would like to assign probabilities to events. Mathematically,
this just means that we associate to each set B a real number. A priori we
could do this in an arbitrary way. However, we are restricted if we want
these probabilities to reflect the experiment we are trying to model. How
should we make this assignment? We have already assigned each point
the number s™*. Thus a one-point set {w} should be assigned the number
s~'. Now from our discussion of the relative frequency of the event
“drawing a red ball,” it seems that we should assign the event A the prob-
ability P(4) = r/s. More generally, if B is any event we will define P(B)
by P(B) = jjs if B has exactly j points. We then observe that

PB)= ¥ h>

o6 B

where 3. . » P means that we sum the numbers p, over those values of k
such that @, € B. From our definition of P(B) it easily follows that the
following statements are true, We leave their verification to the reader.

Let J denote the empty set; thcnP(ﬂ)-OandF(ﬂ)-l IfAand B
are any two disjoint sets, i.e., 4 N B = @, then

P(4 U B) = P(4) + P(B).

Exempie 2. It is known from physical experiments that an isotope of a
certain substance is unstable. In the course of time it decays by the emis-
sion of neutrons to a stable form. We are interested in the time that it .
takes an atom of the isotope to decay to its stable form.’ According to the

A ' s
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laws of physics it is impossible to say with certainty when a specified atom
of the isotope will decay, but if we observe a large number N of atoms
initially, then we can make some accurate predictions about the number of
atoms N(7) that have not decayed by time 7. In other words we can rather
accurately predict the fraction of atoms N(¢)/N that have not decayed by
time ¢, but we cannot say which of the atoms will have done so. Since all
of the atoms are identical, observing N atoms simultaneously should be
equivalent to N repetitions of the same experiment where, in this case,
the experiment consists in observing the time that it takes an atom to decay.

Now to a first approximation (which is actually quite accurate) the rate
at which the isotope decays at time ¢ is proportional to the number of
atoms present at time 7, so N(r) is given approximately as the solution of
the differential equation

d

l:— ==
1 (), fO) =N,

where 4 > 0 is a fixed constant of proportionality. The unique solution
of this equation is f(#) = Ne™*, and thus the fraction of atoms that have
not decayed by time ¢ is given approximately by N(f)/N = e™*. If
0 < # < ty, the fraction of atoms that decay in the time interval [7,, t,]
is (e~* — ¢~%") -Consequently, in accordance with the relative frequency
interpretation of probability we take (e™* — e~*") as the probability
that an atom decays between times 7, and ?,. :

To make a mathematical model of this experiment we can try to proceed
as in the previous example. First we choose a set Q that can be put into a
one-to-one correspondence with the possible outcomes of the experiment.
An outcome ifi this case is the time that an atom takes to decay. This can
be any positive real number, so we take Q to be the interval [0, o) on the
real line. From our discussion above it seems reasonable to assign to

" the interval [#,,7,] the probability (e™** — ¢™*"). In particular if

to =ty = ¢ then the interval degenerates to the set {f} and the prob-
ability assigned to this set is 0. '

In our previous example  had only finitely many points; however, here
0 has a (noncountable) infinity of points and each point has probability 0.
Once again we observe that P(QQ) = 1 and P() = 0. Suppose 4 and B
are two disjoint intervals. Then the proportion of atoms that decay in the
time interval 4 U B is the sum of the proportion that decay in the time
interval 4 and the proportion that decay in the time interval B. In light
of this additivity we demand that in the mathematical model, 4 U B
should have probability P(4) + P(B) assigned to it. In other words, in
the mathematical model we want

"P(A U B) = P(4) + P(B)

whenever A and B are two disjoint intervals.
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1.2. Probability spaces

Our purpose in this section is to develop the formal mathematical
structure, called a probability space, that forms the foundation for the
mathematical treatment of random phenomena.

Envision some real or imaginary experiment that we are trying to model.
The first thing we must do is decide on the possible outcomes of the
experiment. It is not too serious if we admit more things into our con-
sideration than can really occur, but we want to make sure that we do not
exclude things that might occur. Once we decide on the possible out-
comes, we choose a set 2 whose points @ are associated with these
outcomes. From the strictly mathematical point of view, however, Q is
just an abstract set of points. '

We next take a nonempty collection &/ of subsets of Q that is to
represent the collection of “events” to which we wish to assign prob-
abilities. By definition, now, an event means a set 4 in &/. The statement
the event A occurs means that the outcome of our experiment is represented
by some point @ € 4. Again, from the strictly mathematical point of view,
o is just a specified collection of subsets of the set Q. Only sets 4 € o,
i.e., events, will be assigned probabilities. In our model in Example 1,
&/ consisted of all subsets of . In the general situation when Q does not
have a finite pumber of points, as in Example 2, it may not be possible to
choose & in this manner,

The next question is, what should the collection & be? It is quite
reasonable to demand that & be closed under finite unions and finite
intersections of sets.in & as well as under complementation. For example,
if 4 and B are two events, then 4 u B ogcurs if the outcome of our
experiment is either represented by a point in 4 or a point in B. Clearly,
then, if it is going to be-meaningful to talk about the probabilities that 4
and B occur, it should also be meaningful to talk about the probability that
either 4 or B occurs, i.e., that the event 4 w B occurs. Since only sets in
 will be assigned probabilities, we should require that 4 v B € & when-
ever A and B are members of &f. Now 4 n B occurs.if the dutcome of
our experiment- is represented by some point that is in both 4 and B. A
similar line of reasoning to that used for 4 v B convinces us that we
should have 4 n B e of whenever 4, B e . Finally, to say that the
event A does not occur is to say that the outcome of our experiment is not
represented by a point in A4, so that it must be represented by some point
in A°. It would be the height of folly to say that we could talk about the
probability of 4 but not of 4°. Thus we shall demand that whenever A4 is
in & sois A

We have thus arrived at the conclusion that & should be 2 nonempty
collection of subsets of Q having the following properties:
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(i) If A is in o so is A°.
(ii) If A and Barein & soare 4 U Band 4 N B.

‘An easy induction ‘argument shows that if 4, 4,,..., 4, are sets in o
then so are | J7-, 4, and ()i-=1 Ai. Here we use the shorthand notation

u
U A‘ = Al UAz Uty A,'
i=1

and

‘{']IA,—A, N Ay ncen A,
Also, since A N A° = @f and 4 U 4° = (), we see that both the empty
set @ and the set £ must be in of.

A nonempty collection of subséts of a given set Q that is closed under
finite set theoretic operations is called a field of subsets of Q. It therefore
seems we should demand that o be a field of subsets. It turns out, how-
ever, that for certain mathematical reasons just taking & to be a field of
subsets of Q is insufficient. What we will actually demand of the collection
& is more stringent. We will demand that &/ be closed not only under
finite set theoretic operations but under countably infinite set theoretic
operations as well. In other words if {4,}, n = 1, is a sequence of sets in
&, we will demand that

oo @©
UAdesd ad () 4,ed.

n=1 n=1

Here we are using the shorthand notation

@x
Ud=4v4u--- .

n=1

to denote the union of all the sets of the sequence, and

@«
N Aa=4nA;n--
n=1
to denote the intersection of all the sets of the sequence. A collection of
subsets of a given set Q that is closed under countable set theory operations
is called a o-field of subsets of . (The o is put in to distinguish such a
collection from a field of subsets.) More formally we have the following:

_Definition 1 A nonempty collection of subsets o of a set Q is
called a a-field of subsets of Q provided that the following two properties
hold :

(1) If A is in o4, then A® is also in <.
(i) If Ay isin of,n = 1,2,..., then \J7=y A, and (\i=y A, are
both in <.
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We now come to the assignment of probabilities to events. As was
made clear in the examples of the preceding section, the probability of an
event is a nonnegative real number. For an event A4, let P(4) denote this
number. Then 0 < P(4) < 1. The set Q representing every possible
outcome should, of course, be assigned the number 1, so P(Q) = 1. In our
discussion of Example 1 we showed that the probability of events satisfies
the property that if 4 and B are any two disjoint events then P(4 U B) =
P(4) + P(B). Similarly, in Example 2 we showed that if 4 and B are two
disjoint intervals, then we should also require that

P(4 U B) = P(4) + P(B).

It now seems reasonable in general to demand that if 4 and B are
disjoint events then P(4 u B) = P(4) + P(B). By induction, it would
then follow that if 4,, 4,, ..., 4, are any n mutually disjoint sets (that is,
if A, " A; = & whenever i # j), then .

= (agn A‘) - :z-’::: Pd).

Actually, again for mathematical reasons, we will in fact demand that this
additivity property hold for countable collections of disjoint events.

Definition 2 A probability measure P on a o-field of subsets o
of a set Q is a rer’ valued function having domain of satisfying the
following properties :

(i) P@) = 1.
(ii) P(A) = Oforall Ae o.
(i) If Ao n = 1,2, 3,..., are mutually disjoint sets in o, then
P (U A,,) =Y P4,
n=1 n=1
A probability space, denoted by (Q, &, P), is a set Q, a a-field of
subsets s, and a probability measure P defined on o .

It is quite easy to find a probability space that corresponds to the
experiment of drawing a ball from a box. In essence it was already given
in our discussion of that experiment. We simply take Q to be a finite set
having s points, &/ to be the collection of all subsets of 2, and P to be the
probability measure that assigns to 4 the probability P(4) = j/s if 4 has
exactly j points,

Let us now consider the probability space associated with the iso{opc
disintegration experiment (Example 2). Here it is certainly clear that
Q = [0, ), but it is not obvious what & and P should be. Indeed, as we
will indicate below, this is by no means a trivial problem, and one that in
all its ramifications depends on some deep properties of set theory that are
beyond the scope of this book.



