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PREFACE

In the twenty-one years that have elapsed since the original edition was
published, we have collected many ideas for improvements. In deciding
which changes to make, we have continued with our original philosophy of
a reasonably concise presentation that includes numerous applications of
interest in the real world. By incorporating feedback from students in our
classes, we have tried to make the textbook even more student friendly.

The original edition was designed for an intensive one semester course
of 45 lectures and the present text preserves that option with the basic
material contained in the first 8 chapters. A one-semester course may
include Chapters 1, 2, 3.1-3.3, 3.7, 4, 5.1-5.4, 5.6, 6.1-6.5, 6.7-6.9, 7.1—
7.7, 7.10, 8.1-8.2. Several new chapters are included to accommodate
longer courses of two quarters or two semesters and to provide enrichment
for students taking a one-semester course. Numerous new exercises have
been added. Short answers to most exercises are given in an Appendix.

The major changes include the following:

e One of the salient features of the first edition was the introduction of La-
grangian methods at an early stage. In the new edition more Lagrangian
material and examples are included which made it natural to devote a
single chapter to an introduction to the Lagrangian approach. We have
integrated a parallel track development of Lagrangian and Newtonian
methods throughout the text.

e We updated the section on the Grand Tour of the outer planets in
view of the spectacular success of the Voyager space mission. In the first
edition, more than five years before the launch, we did not anticipate how
truly revolutionary this odyssey would be.

e In the treatment of tops we now use the Euler angles and the Lagrangian
to obtain the equations of motion.

e We have expanded the gravitation chapter to introduce the physical
ideas that underlie general relativity and qualitatively explore its conse-
quences.

e An area of exploding interest today is cosmology and we devote a new
chapter to the Newtonian description of the universe as a whole. First we
classify the possible universes consistent with Hubble’s law and Newto-
nian dynamics; then we use the virial theorem together with astronomical

xi




xii Preface

observations to discuss the evidence that most of the matter in the uni-
verse is in the form of dark matter.

e A chapter on special relativity is added for curricula where relativity is
taught in the mechanics course. A description is given of an experimental
test of time dilation with round-the-world flights with atomic clocks.

o The years since the original edition saw the emergence of non-linear dy-
namics as a major area in physics. We give an introduction to this area by
describing solutions to the Duffing equation for a damped and driven an-
harmonic oscillator. After considering approximate analytic solutions, we
explore numerical solutions including the period-doubling route to chaos.
This chapter may provide a convenient starting point for students who
want to do an undergraduate thesis involving numerical studies of non-
linear systems: it is at a somewhat higher level than the other chapters.

e We have deleted a few sections from the original edition in the interest
of keeping a reasonable length. Numerous sections have been rewritten
to make the derivations more understandable. Throughout the text we
have made improvements in notation.

Many colleagues and students contributed greatly to the development
of this new edition and we wish to thank them for their help and encour-
agement. In particular, we would like to express our appreciation to the
following people. Throughout many drafts of the manuscript, Professor
Charles Goebel generously gave us excellent advice and made substantial
contributions to the contents. Amy Barger and Andrew Barger gave valu-
able student input on the manuscript and solved many of the exercises.
Professor Micheal Berger provided input from his classroom experience
with the book. Professors Art Code and Jacqueline Hewett were very
helpful in providing photos. Collin Olson, James Ireland and Andrew
Barger made computer-generated figures. Ed Stoeffhaas skillfully type-
set the manuscript using TEX and created many of the new illustrations.
Jack Shira, as editor of this series, was extremely helpful and supportive
of our efforts to produce an improved textbook.

We have found classical mechanics to be an extremely interesting
course to teach since it offers the opportunity for students to develop
an appreciation for the physical explanation of diverse phenomena. We
sincerely hope that students will enjoy using the book as much as we have

enjoyed creating it!
Vernon Barger

Martin Olsson




Contents

Preface xi
Chapter 1 ONE-DIMENSIONAL MOTION 1
1.1 Newtonian Theory 1

1.2 Interactions 3

1.3 The Drag Racer: Frictional Force 6

1.4 Sport Parachuting: Aerodynamic Drag 8

1.5 Archery: Spring Force 12

1.6 Methods of Solution 13

1.7 Simple Harmonic Oscillator 15

1.8 Damped Harmonic Motion 19

1.9 Damped Oscillator with Driving Force: Resonance 26

Chapter 2 ENERGY CONSERVATION 37
2.1 Potential Energy 37

2.2 Gravitational Escape 39

2.3 Small Oscillations 41

2.4 Three-Dimensional Motion 44

2.5 Conservative Forces in Three Dimensions 58

2.6 Motion in a Plane 64

2.7 Simple Pendulum 67

2.8 Coupled Harmonic Oscillators 71

Chapter 3 LAGRANGIAN METHOD 84
3.1 Lagrange Equations 84

3.2 Lagrange’s Equations in One Dimension 85

3.3 Lagrange’s Equations in Several Dimensions 89

3.4 Constraints 91

3.5 Pendulum With Oscillating Support 96

3.6 Hamilton’s Principle and Lagrange’s Equations 99

3.7 Hamiltons’ Equations 102

Chapter 4 MOMENTUM CONSERVATION 111
4.1 Rocket Motion 113

4.2 Frames of Reference 115

4.3 Elastic Collisions: Lab and CM Systems 118

4.4 Collisions of Billiard Balls 125

4.5 Inelastic Collisions 128

vii




viii Contents

Chapter 5

Chapter 6

Chapter 7

Chapter 8

ANGULAR-MOMENTUM CONSERVATION

5.1 Central Forces

5.2 Planetary Motion

5.3 Kepler’s Laws

5.4 Satellites and Spacecraft

5.5 Grand Tours of the Outer Planets
5.6 Rutherford Scattering

PARTICLE SYSTEMS AND RIGID BODIES
6.1 Center of Mass and the Two-Body Problem
6.2 Rotational Equation of Motion
6.3 Rigid Bodies: Static Equilibrium
6.4 Rotations of Rigid Bodies
6.5 Gyroscope Effect
6.6 The Boomerang
6.7 Moments and Products of Inertia
6.8 Single-Axis Rotations
6.9 Moments-of-Inertia Calculations

6.10 Impulses and Billiard Shots

6.11 Super-Ball Bounces

ACCELERATED COORDINATE SYSTEMS
7.1 Transformation to Moving Coordinate Frames
7.2 Fictitious Forces
7.3 Motion on the Earth
7.4 Foucault’s Pendulum
7.5 Dynamical Balance of a Rigid Body
7.6 Principal Axes and Euler’s Equations
7.7 The Tennis Racket Theorem
7.8 The Earth as a Free Symmetric Top
7.9 The Free Symmetric Top: External Observer
7.10 The Heavy Symmetric Top
7.11 Slipping Tops: Rising and Sleeping
7.12 The Tippie-Top
GRAVITATION
8.1 Attraction of a Spherical Body: Newton’s Theorem
8.2 The Tides
8.3 Tidal Evolution of a Planet-Moon System
8.4 General Relativity: The Theory of Gravity
8.5 Planetary Motion—Périhelion Advance
8.6 Self-Gravitating Bodies: Stars

135
135
144
149
152
154
164

177
177
184
187
189
193
195
203
205
207
211
214

228
228
231
236
241
244
248
252
258
261
264
271
273

284
284
287
295
300
306
309



Chapter 9

Chapter 10

Chapter 11

Appendix A

Appendix B

Index

Contents

NEWTONIAN COSMOLOGY

9.1 The Expansion of the Universe
9.2 Cosmic Redshift

9.3 Virial Theorem

9.4 Dark Matter

RELATIVITY

10.1 The Relativity Idea

10.2 The Michelson-Morley Experiment
10.3 Lorentz Transformation

10.4 Consequences of Relativity

10.5 Relativistic Momentum and Energy
10.6 Relativistic Dynamics

NON-LINEAR MECHANICS: APPROACH TO CHAOS
11.1 The Anharmonic Oscillator
11.2 Approximate Analytic Steady-State Solutions
11.3 Numerical Solutions of Duffing’s Equation
11.4 Transition to Chaos: Bifurcations and
Strange Attractors
11.5 Aspects of Chaotic Behavior

TABLES OF UNITS, CONSTANTS AND DATA
A-1 Abbreviations for Units

A-2 Conversion Factors

A-3 Some Physical Constants

A-4 Some Numerical Constants

A-5 Vector Identities

A-6 Sun and Earth Data

A-7 Moon Data

A-8 Properties of the Planets

ANSWERS TO SELECTED PROBLEMS

ix

321
321
330
332
335

342
342
343
345
350
356
362

367
368
370
374

377
379

392
392
393
394
394
394
395
395
396

397
411



Chapter 1

ONE-DIMENSIONAL MOTION

The formulation of classical mechanics represents a giant milestone in
our intellectual and technological history, as the first mathematical ab-
straction of physical theory from empirical observation. This crowning
achievement is rightly accorded to Isaac Newton (1642-1727), who mod-
estly acknowledged that if he had seen further than others, “it is by
standing upon the shoulders of Giants.” However, the great physicist
Pierre Simon Laplace characterized Newton’s work as the supreme exhi-
bition of individual intellectual effort in the history of the human race.

Newton translated the interpretation of various physical observa-
tions into a compact mathematical theory. Three centuries of experience
indicate that mechanical behavior in the everyday domain can be under-
stood from Newton’s theory. His simple hypotheses are now elevated to
the exalted status of laws, and these are our point of embarkation into
the subject.

1.1 Newtonian Theory

The Newtonian theory of mechanics is customarily stated in three laws.
According to the first law, a particle continues in uniform motion (i.e.,
in a straight line at constant velocity) unless a force acts on it. The first
law is a fundamental observation that physics is simpler when viewed
from a certain kind of coordinate system, called an inertial frame. One
cannot define an inertial frame except by saying that it is a frame in
which Newton’s laws hold. However, once one finds (or imagines) such a
frame, all other frames which move with respect to it at constant velocity,
with no rotation, are also inertial frames. A coordinate system fixed on
the surface of the earth is not an inertial frame because of the accelera-
tion due to the rotation of the earth and the earth’s motion around the
sun. Nevertheless, for many purposes it is an adequate approximation
to regard a coordinate frame fixed on the earth’s surface as an inertial
frame. Indeed, Newton himself discovered nature’s true laws while riding
on the earth!




2 Chapter 1 ONE-DIMENSIONAL MOTION

The essence of Newton’s theory is the second law, which states that
the time rate of change of momentum of a body is equal to the force acting
on the particle. For motion in one dimension, the second law is

dp
== 1.1
F=— (1.1)
where the momentum p is given by the product of (mass) X (velocity)
for the particle

p=mv (1.2)

The second law provides a definition of force. It is useful because expe-
rience has shown that the force on a body is related in a quantitative
way to the presence of other bodies in its vicinity. Further, in many cir-
cumstances it is found that the force on a body can be expressed as a
function of z, v, and ¢, and so (1.1) becomes

dp d’*z
Flz,v,t) = — =m— 1.3
(2,0,2) dt dt? (13)
This differential equation is called the equation of motion. Here m is
assumed to be constant. For the remainder of this book we use Newton’s
notation ¢ = dz/dt; ¥ = d*z/dt®. Newton’s second law is then

F(z,&,t) = mi = ma (1.4)

where a = & is the acceleration. In the special case F' = 0, integration of
(1.1) gives p = constant in accordance with the first law.

While Newton’s laws apply to any situation in which one can spec-
ify the force, very few interesting physical problems lead to force laws
amenable to simple mathematical solution. The fundamental force laws
of gravitation and electromagnetism do have simple forms for which the
second law of motion can often be solved exactly. The use of approximate
empirical forms to approximate the true force laws of physical situations
involving frictional and drag forces is one of the arts that will be taught
in this book. However, in this modern age of computers, one can handle
arbitrary force laws by the brute-force method of numerical integration.

The third law states that if body A experiences a force due to body B,
then B experiences an equal but opposite force due to A. (One speaks of
this as the force between the two bodies.) As a consequence, the rates of
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change of the momenta of particles A and B are equal but opposite, and
therefore the total p4 + pp is constant. This law is extremely useful, for
instance in the treatment of rigid-body motion, but its range of applica-
bility is not as universal as the first two laws. The third law breaks down
when the interaction between the particles is electromagnetic, because
the electromagnetic field carries momentum.

It is a remarkable fact that macroscopic phenomena can be explained
by such a simple set of mathematical laws. As we shall see, the math-
ematical solutions to some problems can be complex; nevertheless, the
physical basis is just (1.1). Of course, there is still a great deal of physics
to put into (1.1), namely, the laws of force for specific kinds of interac-
tions.

1.2 Interactions

Using the planetary orbit data analysis by Kepler, Newton was able to
show that all known planetary orbits could be accounted for by the fol-
lowing force law

GM\ M,

r2

F= (1.5)
This states that force between masses M; and M; is proportional to the
masses and inversely proportional to the square of the distance between
them. The negative sign in (1.5) denotes an attractive force between
the masses. The force acts along the line between the two masses and
thus for non-rotational motion the problem is effectively one-dimensional.
Newton proposed that this gravitational law was universal, the same
force law applying between us and the earth as between celestial bodies
(and more generally between any two masses). The universality of the
gravitational law can be verified, and the proportionality constant G
determined, by delicate experimental measurements of the force between
masses in the laboratory. The value of G is

G = 6.672 x 107 m3/(kgs)® (1.6)

The dominant gravitational force on an object located on the surface
of the earth is the attraction to the earth. The gravitational force between
two spherically symmetric bodies is as if all the mass of each body were
concentrated at its center, as Newton proved. We will give a proof of this
assertion in Chapter 8. The earth is very nearly spherical so we can use




4 Chapter 1 ONE-DIMENSIONAL MOTION

the force law of (1.5). Thus for an object of mass m on the surface of
earth, the force is

MgG
F=-m RE2 = —myg (1.7)
E
where g is the gravitational acceleration,
g=~9.8 m/s’ (1.8)

Using the measured value of R = 6,371 km along with the measured
values of g and G as given above, we may use (1.7) to deduce the mass
of the earth to be

Mg = 5.97 x 10** kg (1.9)

Since the earth’s radius is large, the gravitational force of an object any-
where in the biosphere is given to good accuracy by (1.7); even at the top
of the atmosphere (= 200 km up) the force has decreased by less than
10% from its value at the surface of the earth. Consequently, in many
applications on earth, we can neglect the variation of the gravitational
force with position.

The static Coulomb force between two charges e; and ey is similar in
form to the gravitational-force law of (1.5),
F =k (1.10)

r2

This force is attractive if the charges are of opposite sign and repulsive if
the charges are of the same sign. The constant k depends on the system
of electrical units; in ST units, k = (4mep) ™! ~ 9 x 10°N-m? /C2.

Another force with a wide range of application is the spring force or
Hooke’s law, which is expressed as

F=—kz (1.11)

with & > 0. Here k is a spring constant which is dependent on the
properties of the spring and  is the extension of the spring from its
relaxed position. This particular force law is a very good approximation
in many physical situations (e.g., the stretching or bending of materials)
which are initially in equilibrium.
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Frictional forces prevent or damp motions. The static frictional force
between two solid surfaces is

[F| < psN (1.12)

The force F acts to prevent sliding motion. N is the perpendicular
force (normal force) holding the surfaces together, and p, is a material-
dependent coefficient. Equation (1.12) is an approzimate formula for fric-
tional forces which has been deduced from empirical observations. The
frictional force which retards the motion of sliding objects is given by

It is observed that this force is nearly independent of the velocity of the
motion for velocities which are neither too small (where there is molecular
adhesion) nor too large (where frictional heating becomes important). For
a given pair of surfaces, the coefficient of kinetic friction p; is less than
the coefficient of static friction u,.

Frictional laws to describe the motion of a solid through a fluid or
a gas are often complicated by such effects as turbulence. However, for
sufficiently small velocities, the approximate form

F=-bv (1.14)

where b is a constant, holds. The drag coefficient b in (1.14) is pro-
portional to the fluid viscosity. For a sphere of radius @ moving slowly
through a fluid of viscosity 7 the Stokes law of resistance is calculated to

be
bsphere = 6man (115)

At higher, but still subsonic velocities, the drag law is
F = —cv? (1.16)

For instance, the drag force on an airplane is remarkably well represented
by a constant times the square of the velocity. The drag coefficient ¢ for
a body of cross-sectional area S moving through a fluid of density p is
given by

c=3CpSp (1.17)

where Cp is a dimensionless factor related to the geometry of the body
(about 0.4 for a sphere).
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Externally imposed forces can take on a variety of forms. Of those
depending explicitly on time, sinusoidally oscillating forces like

F = Fycoswt (1.18)

are frequently encountered in physical situations.

In a general case the forces can be position-, velocity-, and time-
dependent,

F = F(z,v,t) (1.19)

Among the most interesting and easily solved examples are those in which
the forces depend on only one of the above three variables, as illustrated
by the examples in the following three sections.

1.3 The Drag Racer: Frictional Force

A number of interesting engineering-type problems can be solved from
straightforward application of Newton’s laws. As an illustration, suppose
we consider a drag racer that can achieve maximum possible acceleration
when starting from rest. The external forces on the racer which must
be taken into account are (1) gravity, (2) the normal forces supporting
the racer at the wheels, and (3) the frictional forces which oppose the
rotation of the powered rear wheels. A sketch indicating the various
external forces is given in Fig. 1-1.

FIGURE 1-1. Forces on a drag racer.
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Since the racer is in vertical equilibrium, the sum of the external

vertical forces must vanish,
Ni+ Ny, —Mg=10 (120)

Both N; and N; must be positive. For the horizontal motion we apply
Newton’s second law,

F=Ma (1.21)

The frictional force F is bounded by

The maximum friction force occurs just as the racer tires begin to slip rel-
ative to the drag strip, because the coefficient of kinetic friction is smaller
than the coefficient of static friction. For maximal initial acceleration we
must have the maximum friction force F = uN,. Referring back to (1.20),
a maximal N; = Mg is obtained when N; = 0, that is, when the back
wheels completely support the racer. The greatest possible acceleration
is then

Qrmax = :U(NZ)max

M

We see that the optimum acceleration is independent of the racer’s mass.
Under normal conditions the coefficient of friction i between rubber and
concrete is about unity. Thus a racer can achieve an acceleration of about
9.8 m/s*. In actual design a small normal force N; on the front wheels
is allowed for steering purposes.

= pg (1.23)

The standard drag strip is =~ 400 m (1/4 mi) in length. If we assume
that the racer can maintain the maximum acceleration for the duration of
a race and that the coefficient of friction is constant, we can calculate the
final velocity and the elapsed time. The differential form of the second
law is

F:Ma:M%’ti:Mi (1.24)

When the acceleration a is constant, a single integration

v 4
/ dU = a/ dt (125)
Vo 0




