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Preface

The China Society for Industrial and Applied Mathematics (CSIAM)
had its 9th Annual Conference entitled “Industrial and Applied Math-
ematics in China” with 12 plenary talks from August 14 to 18, 2006 in
Nanjing, China. Later on, in the 6th International Congress on Indus-
trial and Applied Mathematics (ICIAM 2007) held from July 16 to 20,
2007 in Zurich, Switzerland, CSIAM organized an embedded meeting
with the same title on July 18, 2007, which consists of two two-hour
sessions with six lectures. Since all these talks concern the topic “In-
dustrial and Applied Mathematics in China”, we gather a large part of
them in this volume for publication. We hope that the readers can get
an impression on the present situation and trends of the industrial and
applied mathematics in China from this volume and the researchers and
graduate students in applied mathematics and in applied sciences can
benefit from the mathematical models and methods with applications
presented in this book.

We would like to take this opportunity to give our sincere thanks to
all the speakers and, in particular, to those who gave their contribution
to this volume for their kind help and support.

Ta-Tsien Li
July 2008
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Mechanized Methods for
Differential and Difference Equations

P

Xiaoshan Gao, Ziming Li
Key Laboratory of Mathematics Mechanization
Institute of Systems Science, AMSS
Academia Sinica, Beijing 100080, China
Email: {zgao, zmli} @mmrc.iss.ac.cn

Abstract

Some recent results on the mechanized methods for differential
and difference equations are surveyed. The results include: the
characteristic set method for differential and difference equation
systems, algorithms for computing closed-form solutions of dif-
ferential and difference equations, and algorithms for solving and
factoring finite-dimensional linear functional systems.

1 Introduction

This paper provides a survey of some recent work on differential and dif-
ference equations by researchers at the Key Laboratory of Mathematics
Mechanization and their collaborators. The work under review is greatly
stimulated by Wu’s method for mechanical theorem-proving in differen-
tial geometries, finding closed-form solutions of differential (difference)
equations, and handling analytic and discrete mathematical objects by
computers.

Differential equations describe physical laws in mechanics and geo-
metric properties of manifolds. The characteristic set method for dif-
ferential equations enables us to search for physical laws and geomet-
ric properties by computers [52]. For example, Newton'’s gravitational
law is automatically derived form Kepler's laws [51], and “Theorema
Egregium” is rediscovered by computing a characteristic set of the fun-
damental equations of surface theory [30].

The notion of characteristic sets for differential ideals was introduced
by Ritt [42]. It plays a fundamental role in differential algebra, because

*Partially supported by a National Key Basic Research Project of China (2004CB
318000).
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the Hilbert Basissatz does not hold for differential ideals. The notion and
algorithm of characteristic sets for polynomial and differential polyno-
mial sets were introduced by Wu [48,50] to prove theorems in geometries
and to manipulate systems of differential and algebraic equations [48,49].
Wu'’s work inspired a great deal of research in the communities of sym-
bolic computation and automated reasoning. Later on, the success of
Grénber bases for polynomial ideals led to methods to characterizing
radical differential ideals [4]. The reader may consult [44] for more details
on the recent developments of the differential characteristic set method.
In this paper we briefly review Wu'’s scheme for differential characteristic
sets and point out its recent extension to difference polynomial systems.

Integrals, special functions and combinatorial sequences are often
considered as “infinite” objects. To specify them in terms of a finite
amount of information on computers, one uses the differential (differ-
ence) equations annihilating these objects. For instances, automatic
proofs of combinatorial identities need to find hypergeometric solutions
of difference equations [37], while algorithms for symbolic integration
need to compute elementary functions satisfying Risch’s equation [7].
Great efforts have been made to compute closed-form solutions of linear
ordinary differential (difference) equations (see, [26,39] and the references
therein). There are two ways to go further: one is to look for closed-
form solutions of nonlinear ordinary differential (difference) equations of
some kind; the other is to develop symbolic algorithms for linear partial
differential (difference) equations. We will summarize recent theoretical
and algorithmic results concerning this subject.

Nonlinear differential equations arise from physics. Their analytic so-
lutions are important for the understanding of the physical phenomena.
Interesting methods to search for analytic solutions of nonlinear PDEs
are given in [16,53).

Factoring polynomials helps us to solve algebraic equations. Likewise,
we want to decompose differential and difference equations into those of
lower orders. There have been efficient algorithms for decomposing linear
ordinary differential operators [6,24,25,43]. Recent work on extending
these methods to linear partial differential and difference equations [33]
will be surveyed. We also mention that a decomposition algorithm for
nonlinear ordinary differential equations is presented in {23].

The rest of this paper is organized as follows. In Section 2, we cutline
the differential characteristic method. Methods for computing rational
and algebraic solutions of first-order ordinary differential and difference
equations are presented in Section 3. An algebraic setting and a fac-
torization algorithm for finite-dimensional linear functional systems are
described in Sections 4 and 5, respectively.
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2 The characteristic set method

The characteristic set method plays a central role in the theory and appli-
cations of mathematics mechanization. In this section, we will introduce
its main features and applications in automated reasoning.

2.1 Properties of ascending chains

Let K be an ordinary differential field, X = {z1,...,z,} a set of differ-
ential indeterminates, and K{X} the set of differential polynomials in X
with coefficients in K. We denote z; ; to be the j-derivative of z;. The
universal field E over K is a differentially closed field containing K and

infinitely many indeterminates. For a polynomial D and a polynomial
set P C K[X],

Zero(P) = {n € E*| P(n) =0,VP € P}

is called a variety, and Zero(P/D) = Zero(P) \ Zero(D) is called a quasi
variety.

A set A of differential polynomials is called an ascending chain (tri-
angular set), or simply a chain, if after renaming the indeterminates
in XasU={uy,...,uq} and Y = {y1,...,yp}, we can write A in the
following form:

A1(U,y) =T 1y1 b, + terms of lower orders and degrees in y;,

1)

Ap(Uyy1,. .., ¥p) = pygfop + terms of lower orders and degrees in y,.

As a matter of terminologies, o; is called the order of A;; I; is called the
initial of A;, S; = ﬂ-‘— is called the separant of A;. Write L4 =[], I;S;.
The dimension of A is defined to be U] =g, Wthh is denoted dim(A).
The order of A is defined to be ord(A) = . The degree of A is
defined to be deg(A) = [1}_, d;.

We could say that the formal solutions for a chain is basically de-
termined. Intuitively, for a set of given values of the parameters U, the
y; can be determined iteratively by solving univariate equations A; = 0.
In order to show the properties of chains, we first introduce several con-
cepts. The saturation ideal of A is defined to be

sat(A) = {P € K{X}| Ik e N, I P € (4)}.
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We may define a partial ordering among the chains in a nature way
[42,52]. It is known that any set of chains contains one with lowest
order. A characteristic set of a differential polynomial set P is any
chain of lowest ordering contained in P.

A chain A is called irreducible if A; is an irreducible polynomial in
Y1,0, and Ay is an irreducible polynomial modulo A1,..., Ax_1.

Theorem 2.1. [42,52] Let A be an irreducible chain. Then sat(A) is a
prime ideal of dimension dim(.A), order ord(A) wrt U, and degree deg(.A)
wrt U. Conversely, a characteristic set of a prime ideal is irreducible.

The following result shows that the dimension, order and degree of a
chain are intrinsic properties.

Theorem 2.2. [19,22] Let A be a chain of form (1). If Zero(sat(A)) #
&, Zero(sat(A)) and Zero(A/L4) are unmized. More precisely, write
Zero(sat(A)) as an irredundant decomposition: Zero(sat(A)) = Ul_; Zero
(sat(C;)). Then

(1) C; is also of form (1). As a consequence, dim(sat(C;)) = dim(A)
and ord(C;) = ord(A).

(2) deg(A) > >°_, deg(C;). Furthermore, deg(A) = Y.;_, deg(C;) iff
A is saturated, that is, the initials and seprants of A are invertible
wrt A.

Another important property for chains is

Theorem 2.3. [52] An irreducible chain admits a formal power series
solution which can be computed algorithmically.

In order to make the paper shorter, we limit to the ordinary dif-
ferential case. Similar results for the partial differential case were also
established, where we need to assume that the chains are either pas-
sive [49,52] or coherent [4,5,27].

Similar results are also proved in the case of algebraic difference
polynomials [21,22]. However, in the difference case, we do not have
algorithms to decide whether a chain is irreducible. In order to have a
constructive theory, proper irreducible chains are introduced [21]. Also,
Theorem 2.2 is proved only for proper irreducible chains.

2.2 Characteristic set method

The characteristic set method decomposes the zero set for a differential
polynomial system in general form into the union of zero sets for chains.
Since the zero set, of a chain is considered to be known, this method gives
a general tool to deal with differential equation systems.
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Let P be a finite set of differential polynomials. Then we can perform
the following operations:

P=FP P, -« P -+ Pn,
By By -~ By -+ Bn=¢C, (2)
Ry R, - R -+ Rp=2,

where B; is a lowest chain in P; with respect to a pre-selected partial
ordering; R; is the set of nonzero remainders of the polynomials in IP;
wrt B;; and P;y 1 = Po U B; UR;. In scheme (2), Bm = C verifies

prem(P,C) = {0} and Zero(P) C Zero(C), (3)

where prem denotes the differential pseudo-remainder. Any chain C ver-
ifying the property (3) is called a Wu characteristic set of P.

Theorem 2.4 (Wu’s Well-ordering Principle). [49, 52 Let C be a Wu
characteristic set of a finite set P of differential polynomials. Then:

Zero(P) = Zero(C/I¢) U UsZero(PUC U {1;}),
Zero(P) = Zero(sat(C)) | JuiZero(PLC U {L}),
where I; are the initials and separants of the polynomials in C.

Using the well-ordering principle recursively, we obtain the following
key result.

Theorem 2.5 (Ritt-Wu’s Zero Decomposition Theorem). 42,52/ There
is an algorithm which permits to determine, for a given finite set P of
differential polynomials, a finite set of (irreducible) chains A; such that

Zero(lP) = U;Zero(A; /14,) = UjZero(sat(A;)).

Let P be a finite subset of K{U,X}, and D € K{U,X}, where U =
{u1,...,um} and X = {z1,...,2Zn}. The projection of Zero(P/D) to U
is defined as follows:

ProjyZero(P/D) = {e € E™ | 3a € E* s.t. (e,a) € Zero(P/D)}.

Projection for quasi-varieties can be computed with the characteristic
set method.

Theorem 2.6 (Projection Theorem). [19] For a finite subset set P C
K{U,X} and D € K{U,X}, we can compute chains A; and polynomials
D; in K[U] such that

ProjyZero(P/D) = Ul_, Zero(A;/ D1 4,).
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The concept of characteristic sets for prime ideals was introduced
by Ritt [42]. The notion of characteristic sets given above, the well-
ordering principle, and the current form of zero decomposition theorems
were introduced by Wu [48,49,52]. An implementation of the method can
be found in [46]. In order to improve the efficiency, new characteristic set
methods were proposed [4,5,9, 10, 18, 27,40,45]. The characteristic set
method was used to solve certain problems for analytical functions [41].

A characteristic set method for algebraic difference equation systems
was proposed in [21,22]. It is quit surprising that there are no essential
progresses for the theory and algorithms of difference characteristic set
methods since the early work of Ritt and his colleagues in the 1930s.
In {21], an algorithm was proposed to decompose the zero set a differ-
ence polynomial system into the union of unmixed zero sets of difference
polynomial systems represented by proper irreducible chains. In [22], a
new resolvent theory for difference polynomial systems was proposed.

To solve a set of equations in triangular form, we need to solve uni-
variate equations in a cascade form. The resolvent methods were intro-
duced to reduce the solving of equation systems into the solving of one
univariate equation plus a set of linear equations [13, 22].

2.3 Wu’s method of automated geometry theorem
proving and discovering

A geometry theorem is called a theorem of equality type, if after intro-
ducing coordinates, the theorem can be expressed in the following form

V.’II«,'[(Hl=0/\"'/\H3=0/\D17éOA"'/\Dt=,£0)=>(C=O)], (4)

where H;, D;,C are in K{X}.
For theorems of equality type, we have the following principles of

mechanical theorem proving, which are consequences of Theorems 2.1
and 2.4.

Theorem 2.7. [4{9] For a geometry statement of form (4), let A be
a Wu-characteristic set of {Hi, ...,Hs}. If prem(C,A) = 0, then the
statement is valid under the non-degenerate condition I 4 # 0.

Note that the non-degenerate condition I4 # 0 is generated auto-
matically by the algorithm.

Theorem 2.8. [52] Let D =[], D;. By Theorem 2.5, we have
Zero({H.,...,H,}/D) = U'_,Zero(sat(A;)/ D).

If prem(C, A;) = 0,1 = 1,...,1, then the statement is true. If A; is
irreducible and prem(C, A;) # 0, then the statement is not valid on
Zero(sat(A;)/ D).
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As an example, let us show how to prove Newton’s gravitational
law with Kepler’s laws. The first and second Kepler laws state that each
planet describes an ellipse with the sun in one focus and the radius vector
drawn from the sun to a planet sweeps out equal areas in equal times.
The Newton’s law states that the acceleration is reversely proportional
to the distance from the planet to the sun. We may use differential
equations K; = 0, K = 0, and N; = (ar?)’ = 0 to represent these laws:

hi=72—22-9y* =0,

hz =a2 —.’E”2 _y//2 :0’
Ki=r—p—ex=0Ap =0A€e =0,
Ko=yz—yr’' —h=0AR =0,

di =p+#0 (The ellipse is not a line.).

Then, we need to show
Vz,y,p,6,a,7[(K1 =0AKy =0Ah1 =0Ahy =0Ad, #0) = N; =0].
By Theorem 2.5 (p<e<z <y <r < a),

Zero({K1,p', €, h1, ha,n2}/p) = Zero(sat(A; )p),

where A, is a chain. By computation, we have prem(n;, ASC;) = 0,
which proves Newton’s law.

There are two kinds of problems in differential geometry other than
theorem proving. One is finding locus equations, the other is deriv-
ing geometry formulas. For a geometric configuration given by a set of
polynomial equations h1(U,z1, -+, p) =0, , A (U,z1, -+ ,z,) =0,
we want to find a relation between arbitrarily chosen variables U (pa-
rameters) and a dependent variable, say, ;. Wu pointed out that the
characteristic set method can be used to discover such unknown geomet-
ric formulas [51]. Actually, Newton’s law can be deduced from Kepler’s
laws automatically in this way. More detailed accounts can be found
in [10,11,30, 45).

The characteristic set method can be used to prove a much wider
class of geometry theorems. Let E be a differentially closed extension
of K, say, the field of meromorphic functions [42]. A first order formula
over E can be defined as follows.

1. If P € K[X], then P(X) = 0 is a formula.
2. If f, g are formulas, then —f, f A g, and f V g are formulas.
3. If f is a formula, then 3z; € E(f) and Vz; € E(f) are formulas.

A formula can always be written as a prefix canonical form

¢:Qlyl"'mem'lp(ula'--7ud)y1a"',yﬂ1)’ (5)
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where Q, is a quantifier 3 or V and ¢ a formula free of quantifiers. For

a first order formula ¢ of form (5), there exists a fundamental problem:
Quantifier Elimination: Find a formula 8(u;, ..., uq) such that 8

is equivalent to ¢. If d = 0, we need to decide whether ¢ is valid or not.
As a consequence of Theorem 2.6, we have

Theorem 2.9. There exists a decision procedure for the first order the-
ory over a differentially closed field.

3 Rational and algebraic solutions of ODEs
and OAEs

For brevity we abbreviate ordinary difference equations as OAE.

By decomposing the zero set of a differential polynomial system into
the zero sets of chains, the characteristic set method gives a complete
way to describe the structure for the zero sets of equation systems. In
particular, finding the solutions of differential polynomial systems can
be reduced to finding those of a single differential equation or a system
of equations in a single variable.

Closed-form solutions of linear ODEs and OAEs were widely studied.
On the other hand, similar results to nonlinear ODEs are very limited. In
this section, we summarize some recent results on finding rational and
algebraic solutions to nonlinear ODEs and OAEs. It is interesting to
see whether these results can be treated uniformity with the differential
Galois theory [35].

3.1 Rational and algebraic solutions of algebraic
ODEs

Let P € K{y} \ K be an irreducible differential polynomial in an inde-
terminate y and

Tp = {A € K{y}|SA = 0mod {P}},

where S is the separant of P and {P} is the radical differential ideal
generated by P. Then Xp is a prime ideal [42]. A generic zero of Tp
is defined to be a general solution of P = 0. In particular, an algebraic
general solution of P = 0 is a general solution § which satisfies the
following equation

G(z,y) = Y ai(z)y’ =0, (6)
i=0
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where a; is a polynomial in = with degree ; and with constant coeffi-
cients, and G{z,y) is an irreducible polynomial in z,y. Whenn =1, §
is called a rational general solution of P = 0.

For ag, a1, ,0n € Zzo, we define the differential polynomial

D(ao;al,-n Jan) T det(‘A(h,Ou;ao) (y)lA(h,az;ag)(y2)l t I-A(h,a,.;ag)(yn));

where
(:gl)y,m ,SkJ{l)yk e (:I:) Yeti-a
A,k (¥) = (%) ys2 IS o )Ukt2—a
(k+g+1)yk+h+1 (k+ilz+1)yk+h . (k+Z+1) Yot hil-a
‘We have

Lemma 3.1. [1] y(z) satisfies an equation of the type (6) if and only if
D(ogian,-- ,an) (¥(Z)) = 0. As a consequence, we give a defining differential
equation for algebraic functions.

When n = 2,01 = as =1 and ag = 2,

y3 3y (2 )(m) 3(3/2):,/,

_lya dys (D)W 4%
ID)(2;1,1)‘ Ys 5us (yZ)(S) 5(y2)(4) :

ye 6ys (¥2)©® 6(yH)®)

We have D(y;1,1)(y()) = 0 if and only if

w

(a2,1% + a2,0)9° (@) + (1,12 + a1,0)y(z) + a027% + ao,1 + ag,p =0

for constants a; ;.

The key to find a rational and algebraic function solutions is to give
a degree bound for the solution. We can give these degree bounds for
first order autonomous ODEs. In what follows, let F(y,y1) = 0 be a
first order autonomous ODE. Then we have

Theorem 3.2. [1] If G(z,y) = 0 defines a nontrivial algebraic solution
of F=0, then

(1) deg(G(xa y),-’E) = deg(Fa y1)7
(2) deg(G(z,y),y) < deg(F,y) + deg(F,y1).
The following example shows that the bound in (2) is optimal. Let n >
m > 0 and (n,m) = 1. Then G = y™ — 2™ is irreducible. y* — 2™ =
0 is an algebraic solution of F' = y" ™y — (m/n)™ = 0. Here,

deg(G’(:z:,y),y) = dEg(Fv y) + deg(F7 yl)'
For rational solutions, we could give the exact degree bound [17].



10 Xiaoshan Gao, Ziming Li

Theorem 3.3. If y = P(z)/Q(z) is a rational solution of F(y,y1) =0,
then deg(y(z)) = deg(F,y1).

These degree bounds are obtained by treating F((y,y1) = 0 as an
algebraic curve and the solution as a parametrization of the curve. This
idea also leads to the following algorithm to find a rational solution to a
first order autonomous ODE [17].

Theorem 3.4. Lety = r(z),y1 = s(x) be a proper rational parametriza-
tion of F(y,y1) = 0, where r(x), s(z) are rational functions in z with
constant coefficients. Then F = 0 has a rational general solution iff we
have the following relations

ar(z) = s(z) or a(z—b)*r(z) = s(x),
where a,b are constants and a # 0. If one of the above relations is true,
then replacing = by a(z +¢) (or b— Tzl-&——c)) in y = r(z), we obtain a
rational general solution of F = 0, where c is an arbitrary constant.
The above algorithm depends on the rational parametrization of al-
gebraic curves. A more efficient algorithm is based on Hermite-Padé

approximation.
Let A(z) be a formal power series. If a polynomial G(z,y) satisfies

G(z,A(z)) =0 (x("+1)(m+1)+1) ’

where m = deg(G, z),n = deg(G, y), then we call G(z,y) = 0 Hermite-
Padé approximant to A(x). We could find the algebraic solution for an
first order autonomous ODEs as follows [1].

(1) Find the first N terms f(z) of formal power series solution of F'(y,
y1) = 0, where

N = 2(deg(F, y) + deg(F,11)).
(2) Let d = deg(F,y1). Construct the (d,d,...,d) Hermite-Padé ap-
proximant G(z,y) =0 to f(z).

(3) We need only to check whether G = 0 is a nontrivial algebraic
solution of F = 0.

The complexity of this algorithm is polynomial in terms of the num-
ber of the multiplications in the number field.

3.2 Rational solutions of algebraic OAEs

The result about rational solutions of ODEs can be extended to OAEs.
Let K = Q(z) be the difference field with the difference operator E(z) =
z + 1, y an indeterminate, and y, = E"y.



Mechanized Methods for Differential and Difference Equations 11

Let P € K{y} \ K be an irreducible difference polynomial in y, and
Yp ={4 € Q(z){y}|SA=0mod {P}},

where S is the separant of P. Cohn proved that ¥p is a perfect difference
ideal and it could be decomposed into the intersection of the principle
components of P [14]. Let A be one of the principle components of P.
A general solution of P = 0 is defined as a generic zero of one of the
principle components of £p. A rational general solution of P(y) = 0 is
defined as a general solution of P = 0 with the following form:

i(z) = AT + Gn_1Z 1+ ...+ ag
L) = ™ + by 1x™m 14 b’

(7)

where a;, b; are constants. In particular, if m = 0, we call §j(z) polyno-
mial general solution. For instance, the difference equation (y — ;)2 —
2(y + y1) + 1 = O has two general solutions: y(z) = (z + ¢)? and
y(x) = (ce™ + 1)? where c is an arbitrary constant.

The defining difference equations for polynomial and rational func-
tions are given by the following lemmas [20].
Lemma 3.5. Let P = Y0 (1) (") yi. Then y(z) = anz™ +

An-12" !t + -+ a9 (E(a;) = a;) if and :)nly if Pn(y(z)) =0.
Let

n+1 ] n+1
Rnm = det(Z(—l)’( . )Yz * M),

i=0 '
where Y; = diag(yi, Yi+1, " s Ym+i)y Mi = (Hi1(2)) m+1) x (m+1)s
Hy (1)
_(Gt+k-n)lG+k-n—-1)---(i+k—n—-DE+k—n—-1—-2)---i+k—n—m)
- (-1)™=t{m+1-DY I - 1) )

AnE™+0p 12" " 14 Fag
bz +bm_12™ 1 +--+bg

Lemma 3.6. y(z) =
E(a:) = ai, E(b;) = b;.

& Ram(y(z)) = 0 where

Using properties of the proper parametrization of algebraic curves,
the degree bound for the rational solution can be given [20].

Theorem 3.7. Let F(y,y1) = 0 be a first order autonomous OAE. If
y(z) € Q(z)\Q is a rational solution of F = 0, then deg(y(z))=deg(F,y1)
=deg(F,y).

Similar to the differential case, the rational solutions can be found
with the help of rational parametrization of algebraic curves [20].



