UML 5 i) X R8¢ it 3% A B

i %t 2
B AP T H

TESTING OBJECT-ORIENTED SYSTEMS
MODELS, PATTERNS, AND TOOLS

ROBERT V. BINDER %i#

BOOCH
B JACOBSON
A RUMBAUGH

g’@“*ﬁ\#

www.Ssclencep.com

Fv
(TP-1954.0101)

Software Testing/Object Technology

More than ever, mission-critical and business-critical applications depend on object-oriented (OO)
software. Testing techniques tailored to the unique challenges of OO technology are necessary to
achieve high reliability and quality. Testing Object-Oriented Syetems: Model, Patterns, and
Tools is an authoritative guide to designing and automating test suites for OO applications.

This comprehensive book explains why testing must be model-based and provides in-depth
coverage of techniques to develop testable models from state machines, combinational logic, and
the Unified Modeling Language (UML). It introduces the test design pattern and presents 37 pat-
terns that explain how to design responsibility-based test suites, how to tailor integration and re-
gression testing for OO code, how to test reusable components and frameworks, and how to devel-
op highly effective test suites from use cases.

Effective testing must be automated and must leverage object technology. The author describes
how to design and code specification-based assertions to offset testability losses due to inheritance
and polymorphism. Fifteen micro-patterns present oracle strategies--practical solutions for one of
the hardest problems in test design. Seventeen design patterns explain how to automate your test
suites with a coherent OO test harness framework

The author provides thorough coverage of testing issues such as:

» The bug hazards of OO programming and differences from testing procedural code
* How to design responsibility-based tests for classes, clusters, and subsystems using
class invariants, interface data flow models, hierarchic state machines, class associations,
and scenario analysis
* How to supper reuse by effective testing of abstract classes, generic classes, components,
and frameworks
How to choose an integration strategy that supports iterative and incremental development
How to achieve comprehensive system testing with testable use cases
How to choose a regression test approach
How develop expected test results and evaluate the post-test state of an object
How automate testing with assertions, OOtest drivers,stubs,and test frameworks

Real-world experience, world-class best practices, and the latest research in object-oriented testing
are included. Practical examples illustrate test design and test automation for Ada 95, C++, Eiffel,
Java, Objective-C, and Smalltalk. The UML is used throughout, but the test design patterns apply
to systems developed with any OO language or methodology.

Robert V. Binder, president and founder of RBSC Corporation, is internationally recognized as
the leading expert in testing object-oriented systems. With more than 25 years of software develop-
ment experience in a wide range of technical and management roles, he has implemented ad-
vanced OO test design and automation solutions for hundreds of clients. He is the author of Appli-
cation Debugging, writes a column on testing for Component Strategies, and has published many
articles in peer-reviewed and popular journals. He serves on the board of the annual Quality Week
conference and is a senior member of the IEEE.

For sale and distribution in the People's Republic of China ex- ISBN 7-03-011399-3
cluswely(except Talwan Hong Kong SAR and Macao SAR). "

(PR T NRIERE SN (ARG E &, Rl
FERATE X AR E S X). B RAT

Find more information about the Object Technology Series
at http://www.awl.com/cseng/otseries

vy ADDISON-WESLEY ISBN 7-03-011399-3

Pearson Education == . —
http://www.PearsonEd.com E ﬁ} 12090 7t

UML 5 e S F XIS

TH [2) 3 R ZRGE i
=8 YEE5ITR

Robert V. Binder 4w

M5 8 B

" A B

SEYCIL R EARROE PE AT) X R RS, A B IRABAR R U A D). ABERANRT
I HPRASHL. DM UML JFAAT AR JE D 2 A28, T ALk 35 SR]
BB fTEr Xt 00 A E SRS VE . WATRA AT E A RAESE, AR I fTAR s FH LT
KA AP IRAR O TV 2 S BRI LR BRI T [e X S B0al UsK f SSoBr B TR

LT 1 % % R GEREE PEAT SR TT R S BN 6, B mT R R4S

English reprint copyright©2003 by Science Press and Pearson Education North Asia Limited.

Original English language title: Testing Object-Oriented Systems: Models, Patterns, and Tools,1* Edition by
Robert V. Binder, Copyright©2000

ISBN 0-201-80938-9

All Rights Reserved.

Published by arrangement with the original publisher, Pearson Education, Inc., publishing as Addison-Wesley
Publishing Company, Inc.

For sale and distribution in the People’s Republic of China exclusively (except Taiwan, Hong Kong SAR and
Macao SAR).
R T rh S NRICRTEEE N O RE AR, IR AT X A e [H S X) 88 & AT.

A5 E}HIWGA Pearson Education(B5 AE#EH UL D BOCH I htr 3. LrEEAFHE.
77 01-2003-2540
BB &/ % B (CIP) &R

[3 B R Gk KR ML 5 T H=Testing Object-Oriented Systems: Models, Patterns and
Tools/ (%) Ff# (Binder,R.V.) #FH —SEIA. —Jbnt: R HARAL, 2003

ISBN 7-03-011399-3

L. 1. NLEESRES—EFO—%3C IV.TP312

o [A B R0 CIP Fdfi L 7 (2003) 28 030826

F R %H: BRE/TIEHRE: FRE
TALEPH): SARK/ @AM RAFTALF@RITE
4 2 & B & IR)
Jbs 4R sk AL 165
B4 9: 100717
http:// www.sciencep.com

4 % & Hk
FREthRARTT SHEE SR

*
200345 H#S — MR FFAS: 787X960 1/16
2003 4F 5 A —WKER] EDgk: 77112
EN¥: 1—2000 FH¥r: 1483000
EMr:120.00 7T

(WA ENRRR S, BARFRBREAHE)

FEHEE

BEE T EALAE 1 R A B TR AT AR PO HFEE T R, N TSRt EEATY K. &
TRV [BB AR, ORI 2. XS B AR 1 R M A
PER. 20 t4d 60 ARt ANTERRMIAR 2% B TR 7 A A &
LB, TR AN 60 FRZL TR FHF TA/ES S R, SR 70
EREWALH TRt 80 SEARIH LA R R IF & ik, HEIE M X R Rk

] [7] % R BT & B R ES AT R GRS A R R R R E R &
MXE, EEfad. s, 40K, HEFALARWBLEENH, RIUFRAIFEE LR
RS 240) BUS AL R R, 7R AR F R T A fal. mmX S E AR R
BRFEHES, UG XA LR HBEEM, TR T HHEXt 28 a8 figit.

20 tH42 80 4K 90 FEAR), Jo/E i TILHFrE mxt Rt k. H,
Booch, Coad/Yourdon, OMT Fil Jacobson % /7 AR E| T 1 [a] X R8T & F-BIT ZIAA] .
BF XS Z H X RS REREAR MR, BMEREMHER, &R ERFRE
AR, #id 90 FRAFE A ERIRZ BT, AMNIZEEAREIA R A HE
R aE, XA HEARGMRRE, R EFEHITRAE S, JFE&MY
EHRNMUARKNESR, ARTH MR SIME. EXFERT, S—BEES
(UML) T 90 S AN IZ 1T 4

UML 7= 4 B AR FF = AL M X 509 8 %% G. Booch, J. Rumbaugh #1 L
Jacobson HYIE ST A1E. AT ZHP sk rhil i TR EA RS, f UML &
MFR BT FMad 7 AR T —F ok, JF B T i P SHE & Bt — 49 R
HPLH . UML AR BT AR RS R GR A T L RIMBEE, ERMERERRE,
S —BABERIXERE . 1997 4F 11 A UML # OMG A ZIE SR MR e LS
T, FHERE B LR & B S SE FEENE S EPRARIE,

UML 7EiEH:FNE XA O T KRB THE. USRS X 27/
EVEEE R RN E X HBEEME, MUFERRA HIEER, wdinf]
18 FX SR THF K - UML NIPA—FEEE S S S B, FAEF ¥ Pr—u
BARREN . REAIEMNEF#NAERCERFZHME, (B XIS 1140
F LAFE B 25 RS 15 TR EE ALY

M UML B 5 BIRA I, (28] TR0 A HER, OMG BRI, vil
B T RHEEHE T SERR BRI RHER AL, (eI ORI P Ew T iz]

i @EatFALAK: BE. MASTE

T AT M 2RI R R, ERGEERS . EE 5 RS AL R
. AR RG. REKE%. BIVUEAYWER TR TR, REEE ., JRE8,
BLES P m . mE e AAU R FIHENEE, oA FIEREGRS, BlaniE
gt SRR S skE RS 51T R, F5%,

£ UML BESERARIILA A S, BHBIE T RI— MRA P RERa s IR, B AL
i i) UML2.0 hiRA-K 2T UML (9 X — K E RSt . FR# UML ¥ &1 S R
ATHATIE . WL EEa S, N TR E A 13,

A AL T 5 1 i) Xt S 4 AR R UML A7 2609 12 445, SO T T [l X 8 B AR B ()
KIBFAFLU L UML BT HIREshas . Hrp b Ko i X R B A IS pF 9T 5 S BR A X
BEILAS: (HEMXMRAGEMRIZT) FEINS T HMAMNRMEAES . HART.
AT . shABT ., BT R ik 2R 4540 % 50 TLAFR R 1T [a) X R B AR U o 5) 2
BHIR S HEE; (FH UML # TR REE) FENFA THEXNROT R, 517
BB, WitBrEc AR A E S MR SEAR; (BRAREE) NE TER G
BIPEEF ENERNAESHEA; (UML XA) W0 T2 8 i) 5]
X R FEE IR MEA

& UML FE4FE SR iz A A XA LA . (UML ERREFE) iTie T HATE
B R R BT EXT UML #4719 RMEAR; (FH UML WE Web W HREF) e Ti5
Fi UML #17 Web N FEBEFT N ZF BN AR S, (ARXTRAGMR: SR, W
5 TR) A48 7R UML A T m o SR U i 4B ik 5 TR, (4.
k. #E4RS UML R) 318 T aflia B UML X i [X 2 3 SR ——Ha (- HE SR 4
REFH TR, (UML 5 Visual Basic i IR A) FE1TE T M UML AR F|
Visual Basic T2 ¢ B 2B 5 ML A E: .

NBE A BREHEARBERES: (COM BFLE) Ml (ATL HEANHE) , &
AT T FIXT R A A FEHTH AR ——COM 1l ATL HoAR M FI 15 SHARNH .

A —4 (Executable UML £ RPIHE) | XAHNA T RIHAT UML 3R 5 H X
FREOR , ST A B0 U SAEHU LA B AR B B s A S T RE , AR R &
B —Fl BT B

B2, XEREEAMATES THRAEMRRN St REEN 7L 5BR, [
At X AR SR A R SRR AR | FIRREREAE TIRABNG, FEAFEEW K
B TR SUS. ATRAUE, B—AERRE .

AT, FEmEASUR P AN R R RS E S, SRR, % 5.

FKFHEME HEk HE

Thus spake the master: “Any program, no matter how small,
contains bugs.”

The novice did not believe the master’s words. “What if the
program were so small that it performed a single function?” he
asked.

“Such a program would have no meaning,” said the master,
“but if such a one existed, the operating system would fail
eventually, producing a bug.”

But the novice was not satisfied. “What if the operating system
did not fail2” he asked.

“There is no operating system that does not fail,” said the
master, “but if such a one existed, the hardware would fail
eventually, producing a bug.”

The novice still was not satisfied. “What if the hardware did not
fail2” he asked.

The master gave a great sigh. “There is no hardware that does
not fail,” he said, “but if such a one existed, the user would
want the program to do something different, and this too is a
bug.”

A program without bugs would be an absurdity, a nonesuch. If
there were a program without any bugs then the world would
cease to exist.

Geoffrey James
The Zen of Programming

Foreword

Some early enthusiastic but misguided advocates of object-oriented program-
ming (OOP) dismissed testing in the erroneous belief that the adoption of OOP
would so reduce the incidence of bugs that testing would no longer be needed.
We first heard similar «claims two generations ago in the context of adopting
Cobol as a standard programming language. More recently, CASE failed to de-
liver on its promise despite clear productivity advantages. For all three, Cobol,
CASE, and lately OO, if adoption of the paradigm were to increase productiv-
ity to the point where there would be no labor in code creation, all that would
be left would be testing and debugging—consuming 100 percent of the labor
content. As was learned over decades of sometimes bitter experience for ptoce-
dural programming languages, every advance has a price. In the case of OO, the
very things that lead to greater flexibility, robustness, generality, and produc-
tivity are also the things that conspire to make testing, if not more difficult, then
at least more challenging.

Nearly everything we have learned about testing procedural language pro-
grams also applies to testing OO implementations. Object-oriented testing, as
exposited in this book, is built on that infrastructure. However, the emphasis
and effectiveness of various test techniques is different for OO. For example,
one might never have reason to use either dataflow testing or finite-state ma-
chine testing for an application written in a procedural programming language:
for an application that exploits what OOP has to offer, the use of these tech-
niques is inescapable. In addition, the relative emphasis on unit and integration
testing changes. In procedural languages, unit testing is of primary importance
and integration testing is secondary. In OOP, the relative importance is re-
versed.

Object-oriented programming also brings new problems for testers, prob-
lems that are not to be found in procedural programming. Of these, polymor-
phism, inheritance, and dynamic binding are the most problematic—and they
are at the heart of OO. Some of the early research on OO testing was distinctly

XXXV

XXXVi Foreword

pessimistic—going so far as to say “What’s the use of OO? We can never test it
properly, and probably never really debug it.” Both the research community
and astute practitioners of OOP were not willing to accept that. What has
emerged from those communities’ mutual concerns is an approach to testing
OO software that uses new techniques and/or old techniques reworked to fit
the new paradigm. This knowledge, however, for the most part, has been inac-
cessible to the practitioner; it lay scattered among hundreds of research papers
or in the largely unpublished folklore of OOP. Binder has rectified this gap in a
skillful exposition of research results tempered by the harsh realities of practice
in an edifice that provides methods and techniques for OOP, while building
on a solid foundation of what has been proven through decades of use in pre-

vious programming paradigms. This book, I believe, provides the missing half
of OOP—the testing half.

Boris Beizer
Abington, Pennsylvania

Preface

What Is This Book About?

Testing Object-Oriented Systems is a guide to designing test suites and test
automation for object-oriented software. It shows how to design test cases for
any object-oriented programming language and object-oriented analysis/design
(OOA/D) methodology. Classes, class clusters, frameworks, subsystems, and
application systems are all considered. Practical and comprehensive guidance is
provided for many test design questions, including the following;:

e How to design responsibility-based tests for classes and small clusters
using behavior models, state-space coverage, and interface dataflow
analysis.

e How to use coverage analysis to assess test completeness.

e How to design responsibility-based tests for large clusters and sub-
systems using dependency analysis and hierarchic state models.

e How to design responsibility-based tests for application systems using
OOA/D models.

* How to automate test execution with object-oriented test drivers, stubs,
test frameworks, and built-in test.

This book is about systems engineering and software engineering as much
as it is about testing object-oriented software. Models are necessary for test de-
sign—this book shows you how to develop testable models focused on pre-
venting and removing bugs. Patterns are used throughout to express best
practices for designing test suites. Tools implement test designs—this book
shows you how to design effective test automation frameworks.

XXXVii

XXXViil

Is This Book for You?

This book is intended for anyone who wants to improve the dependability of
object-oriented systems. The approaches presented range from basic to ad-
vanced. I've tried to make this book like a well-designed kitchen. If all you want
is a sandwich and a cold drink, the high-output range, large work surfaces, and
complete inventory of ingredients won’t get in your way. But the capacity is
there for efficient preparation of a seven-course dinner for 20 guests, when you
need it.

I assume you have at least a working understanding of object-oriented pro-
gramming and object-oriented analysis/design. If you’re like most OO develop-
ers, you've probably specialized in one language (most likely C++ or Java) and
you may have produced or used an object model. I don’t assume that you know
much about testing. You will need some background in computer science and
software engineering to appreciate the advanced material in this book, but you
can apply test design patterns without specialized theoretical training.

You’ll find this book useful if you must answer any of the following
questions.

e What are the differences between testing procedural and object-oriented
software?

* I’ve just written a new subclass and it seems to be working. Do I need
to retest any of the inherited superclass features?

e What kind of testing is needed to be sure that a class behaves correctly
for all possible message sequences?

¢ What is a good integration test strategy for rapid incremental
development?

e How can models represented in the UML be used to design tests?

e What can I do to make it easier to test my classes and applications?
e How can I use testing to achieve greater reuse?

e How should I design test drivers and stubs?

e How can I make my test cases reusable?

¢ How can I design a good system test plan for an OO application?
e How much testing is enough?

The material here is not limited to any particular OO programming lan-
guage, OOA/D methodology, kind of application, or target environment. How-

Preface

Preface

XXXiX

ever, I use the Unified Modeling Language (UML) throughout. Code examples
are given in Ada 95, C++, Java, Eiffel, Objective-C, and Smalltalk.

A Point of View

My seven-year-old son David asked, “Dad, why is your book so big?” I’d just
told David that I’d have to leave his baseball game early to get back to work on
my book. I wanted to explain my choice, so I tried to be clear and truthful in
answering. This is what I told David at the kitchen table on that bright summer
afternoon:

Testing is complicated and I’'m an engineer. Making sure that things work right is
very important for engineers. What do you think would happen if our architect
didn’t make our house strong enough because he was lazy? It would fall down
and we could get hurt. Suppose the engineers at GM did only a few pages’ worth
of testing on the software for the brakes in our car. They might not work when we
need them and we’d crash. So when engineers build something or answer a
question about how to build things, we have to be sure we're right. We have to
be sure nothing is left out. It takes a lot of work.

As I was speaking, I realized this was the point of view I'd been struggling to
articulate. It explains why I wrote this book and the way I look at the problem
of testing object-oriented software. Testing is an integral part of software engi-
neering. Object-oriented technology does not diminish the role of testing. It
does alter some important technical details, compared with other programing
paradigms. So, this is a large book about how testing, viewed as software engi-
neering, should be applied to object-oriented systems development. It is large
because testing and object-oriented development are both large subjects, with a
large intersection. By the way—David hit two home runs later that afternoon
while I was torturing the truth out of some obscure notions.

Acknowledgments

No one who helped me with this book is responsible for its failings.! Dave
Bulman, Jim Hanlon, Pat Loy, Meilir Page-Jones, and Mark Wallace reviewed
the first technical report about the FREE methodology [Binder 94].

In 1993, Diane Crawford, editor of Communications of the ACM, accepted
my proposal for a special issue on object-oriented testing, which was published
in September 1994. The contributors helped to shape my views on the rela-
tionship between the development process and testing. Bill Sasso (then with
Andersen Consulting and now answering a higher calling) sponsored a presen-
tation where questions were asked that led to development of the Mode
Machine Test pattern (see Chapter 12). Bob Ashenhurst of the University of
Chicago, James Weber, and the rest of the Regis Study Group raised more fun-
damental questions: What is a state? Why should we care about pictures?

The following year, Marie Lenzie, as editor of Object Magazine, accepted
my proposal for a bimonthly testing column. Since 1995, writing this column
has forced me to transform often hazy notions into focused, pragmatic guidance
six times each year. Lee White of CASE Western Reserve University and Martin
Woodward of the University of Liverpool, editors of the journal Software
Testing, Verification, and Reliability, encouraged my work in developing a com-
prehensive survey, patiently waited, and then allocated an entire issue to its
publication. Writing the survey helped to sort which questions were important,
why they were asked, and what the best available thinking did and did not
answer.

My publications, conference tutorials, and professional development semi-
nars on object-oriented testing served as a conceptual repository and proving
ground. Many of these materials, with the necessary changes, have been reused
here. The cooperation of RBSC Corporation, SIGS Publications, the ACM, the
IEEE, and Wiley (U.K.) is appreciated in this regard (see Sources and Credits

1. John Le Carre crafted this concise statement about assistance he received on The Tailor
of Panama. 1 can’t improve on it.

xli

xlii

Acknowledgments

that follow for details). The real-world problems and questions posed by my
consulting clients and thousands of seminar participants have been humbling
and constant spurs to refinement.

The patient support of Carter Shanklin and his predecessors at Addison-
Wesley kept this project alive. Boris Beizer’s steady encouragement, suggestions,
and acerbic critiques have been invaluable.

Several adept programmers suggested code examples or helped to improve
my own: Brad Appleton (C++ in the Percolation pattern and elsewhere), Steve
Donelow (Objective-C built-in test), Dave Hoag (Java inner class drivers), Paul
Stachour (Ada 95 assertions and drivers), and Peter Vandenberk (Objective-C
assertions).

Drafts of patterns, chapters, and the entire book have been reviewed by
many people. I am very grateful for the reviewers’ thoughtful and detailed
feedback. Elaine Weyuker helped to debug my interpretation of her Variable
Negation strategy presented in Chapter 6. Brad Appleton and the Chicago
Patterns Study Group held two pattern writer’s workshops that focused on the
test design pattern template and early versions of the Invariant Boundary and
Percolation patterns. Ward Cunningham commented on an early draft of the
test pattern template. Several people reviewed test patterns based on their work:
Tom Ostrand (Category-Partition), John Musa (Allocate Tests by Profile), and
Michael Feathers (Incremental Testing Framework). Derek Hatley reviewed an
early version of Combinational Logic (Chapter 6); Lee White, Regression
Testing (Chapter 15); Doug Hoffman, Oracles (Chapter 18); and Dave Hoag,
Test Harness Design (Chapter 19). Anonymous reviewers of an early version of
the manuscript pointed out many opportunities for improvement. Brad Apple-
ton, Boris Beizer, Camille Bell, Jim Hanlon, and Paul Stachour reviewed the en-
tire final manuscript and provided highly useful commentary.

Finally, thanks to Judith, Emily, and David for years of support, patience,
and encouragement.

Sources and Credits

Some of the author’s previous publications have been reused or adapted under
the terms of the copyright agreements with original publishers of Object Maga-
zine, Component Strategies, Communications of the ACM,and the Journal of
Software Testing, Verification and Reliability. See the Bibliographic Notes sec-
tion in each chapter for specific citations.

