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Software Testing/Object Technology

More than ever, mission-critical and business-critical applications depend on object-oriented (OO)
software. Testing techniques tailored to the unique challenges of OO technology are necessary to
achieve high reliability and quality. Testing Object-Oriented Syetems: Model, Patterns, and
Tools is an authoritative guide to designing and automating test suites for OO applications.

This comprehensive book explains why testing must be model-based and provides in-depth
coverage of techniques to develop testable models from state machines, combinational logic, and
the Unified Modeling Language (UML). It introduces the test design pattern and presents 37 pat-
terns that explain how to design responsibility-based test suites, how to tailor integration and re-
gression testing for OO code, how to test reusable components and frameworks, and how to devel-
op highly effective test suites from use cases.

Effective testing must be automated and must leverage object technology. The author describes
how to design and code specification-based assertions to offset testability losses due to inheritance
and polymorphism. Fifteen micro-patterns present oracle strategies--practical solutions for one of
the hardest problems in test design. Seventeen design patterns explain how to automate your test
suites with a coherent OO test harness framework

The author provides thorough coverage of testing issues such as:

» The bug hazards of OO programming and differences from testing procedural code
* How to design responsibility-based tests for classes, clusters, and subsystems using
class invariants, interface data flow models, hierarchic state machines, class associations,
and scenario analysis
* How to supper reuse by effective testing of abstract classes, generic classes, components,
and frameworks
How to choose an integration strategy that supports iterative and incremental development
How to achieve comprehensive system testing with testable use cases
How to choose a regression test approach
How develop expected test results and evaluate the post-test state of an object
How automate testing with assertions, OOtest drivers,stubs,and test frameworks

Real-world experience, world-class best practices, and the latest research in object-oriented testing
are included. Practical examples illustrate test design and test automation for Ada 95, C++, Eiffel,
Java, Objective-C, and Smalltalk. The UML is used throughout, but the test design patterns apply
to systems developed with any OO language or methodology.

Robert V. Binder, president and founder of RBSC Corporation, is internationally recognized as
the leading expert in testing object-oriented systems. With more than 25 years of software develop-
ment experience in a wide range of technical and management roles, he has implemented ad-
vanced OO test design and automation solutions for hundreds of clients. He is the author of Appli-
cation Debugging, writes a column on testing for Component Strategies, and has published many
articles in peer-reviewed and popular journals. He serves on the board of the annual Quality Week
conference and is a senior member of the IEEE.
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Thus spake the master: “Any program, no matter how small,
contains bugs.”

The novice did not believe the master’s words. “What if the
program were so small that it performed a single function?” he
asked.

“Such a program would have no meaning,” said the master,
“but if such a one existed, the operating system would fail
eventually, producing a bug.”

But the novice was not satisfied. “What if the operating system
did not fail2” he asked.

“There is no operating system that does not fail,” said the
master, “but if such a one existed, the hardware would fail
eventually, producing a bug.”

The novice still was not satisfied. “What if the hardware did not
fail2” he asked.

The master gave a great sigh. “There is no hardware that does
not fail,” he said, “but if such a one existed, the user would
want the program to do something different, and this too is a
bug.”

A program without bugs would be an absurdity, a nonesuch. If
there were a program without any bugs then the world would
cease to exist.

Geoffrey James
The Zen of Programming






Foreword

Some early enthusiastic but misguided advocates of object-oriented program-
ming (OOP) dismissed testing in the erroneous belief that the adoption of OOP
would so reduce the incidence of bugs that testing would no longer be needed.
We first heard similar «claims two generations ago in the context of adopting
Cobol as a standard programming language. More recently, CASE failed to de-
liver on its promise despite clear productivity advantages. For all three, Cobol,
CASE, and lately OO, if adoption of the paradigm were to increase productiv-
ity to the point where there would be no labor in code creation, all that would
be left would be testing and debugging—consuming 100 percent of the labor
content. As was learned over decades of sometimes bitter experience for ptoce-
dural programming languages, every advance has a price. In the case of OO, the
very things that lead to greater flexibility, robustness, generality, and produc-
tivity are also the things that conspire to make testing, if not more difficult, then
at least more challenging.

Nearly everything we have learned about testing procedural language pro-
grams also applies to testing OO implementations. Object-oriented testing, as
exposited in this book, is built on that infrastructure. However, the emphasis
and effectiveness of various test techniques is different for OO. For example,
one might never have reason to use either dataflow testing or finite-state ma-
chine testing for an application written in a procedural programming language:
for an application that exploits what OOP has to offer, the use of these tech-
niques is inescapable. In addition, the relative emphasis on unit and integration
testing changes. In procedural languages, unit testing is of primary importance
and integration testing is secondary. In OOP, the relative importance is re-
versed.

Object-oriented programming also brings new problems for testers, prob-
lems that are not to be found in procedural programming. Of these, polymor-
phism, inheritance, and dynamic binding are the most problematic—and they
are at the heart of OO. Some of the early research on OO testing was distinctly

XXXV



XXXVi Foreword

pessimistic—going so far as to say “What’s the use of OO? We can never test it
properly, and probably never really debug it.” Both the research community
and astute practitioners of OOP were not willing to accept that. What has
emerged from those communities’ mutual concerns is an approach to testing
OO software that uses new techniques and/or old techniques reworked to fit
the new paradigm. This knowledge, however, for the most part, has been inac-
cessible to the practitioner; it lay scattered among hundreds of research papers
or in the largely unpublished folklore of OOP. Binder has rectified this gap in a
skillful exposition of research results tempered by the harsh realities of practice
in an edifice that provides methods and techniques for OOP, while building
on a solid foundation of what has been proven through decades of use in pre-

vious programming paradigms. This book, I believe, provides the missing half
of OOP—the testing half.

Boris Beizer
Abington, Pennsylvania



Preface

What Is This Book About?

Testing Object-Oriented Systems is a guide to designing test suites and test
automation for object-oriented software. It shows how to design test cases for
any object-oriented programming language and object-oriented analysis/design
(OOA/D) methodology. Classes, class clusters, frameworks, subsystems, and
application systems are all considered. Practical and comprehensive guidance is
provided for many test design questions, including the following;:

e How to design responsibility-based tests for classes and small clusters
using behavior models, state-space coverage, and interface dataflow
analysis.

e How to use coverage analysis to assess test completeness.

e How to design responsibility-based tests for large clusters and sub-
systems using dependency analysis and hierarchic state models.

e How to design responsibility-based tests for application systems using
OOA/D models.

* How to automate test execution with object-oriented test drivers, stubs,
test frameworks, and built-in test.

This book is about systems engineering and software engineering as much
as it is about testing object-oriented software. Models are necessary for test de-
sign—this book shows you how to develop testable models focused on pre-
venting and removing bugs. Patterns are used throughout to express best
practices for designing test suites. Tools implement test designs—this book
shows you how to design effective test automation frameworks.

XXXVii
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Is This Book for You?

This book is intended for anyone who wants to improve the dependability of
object-oriented systems. The approaches presented range from basic to ad-
vanced. I've tried to make this book like a well-designed kitchen. If all you want
is a sandwich and a cold drink, the high-output range, large work surfaces, and
complete inventory of ingredients won’t get in your way. But the capacity is
there for efficient preparation of a seven-course dinner for 20 guests, when you
need it.

I assume you have at least a working understanding of object-oriented pro-
gramming and object-oriented analysis/design. If you’re like most OO develop-
ers, you've probably specialized in one language (most likely C++ or Java) and
you may have produced or used an object model. I don’t assume that you know
much about testing. You will need some background in computer science and
software engineering to appreciate the advanced material in this book, but you
can apply test design patterns without specialized theoretical training.

You’ll find this book useful if you must answer any of the following
questions.

e What are the differences between testing procedural and object-oriented
software?

* I’ve just written a new subclass and it seems to be working. Do I need
to retest any of the inherited superclass features?

e What kind of testing is needed to be sure that a class behaves correctly
for all possible message sequences?

¢ What is a good integration test strategy for rapid incremental
development?

e How can models represented in the UML be used to design tests?

e What can I do to make it easier to test my classes and applications?
e How can I use testing to achieve greater reuse?

e How should I design test drivers and stubs?

e How can I make my test cases reusable?

¢ How can I design a good system test plan for an OO application?
e How much testing is enough?

The material here is not limited to any particular OO programming lan-
guage, OOA/D methodology, kind of application, or target environment. How-
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ever, I use the Unified Modeling Language (UML) throughout. Code examples
are given in Ada 95, C++, Java, Eiffel, Objective-C, and Smalltalk.

A Point of View

My seven-year-old son David asked, “Dad, why is your book so big?” I’d just
told David that I’d have to leave his baseball game early to get back to work on
my book. I wanted to explain my choice, so I tried to be clear and truthful in
answering. This is what I told David at the kitchen table on that bright summer
afternoon:

Testing is complicated and I’'m an engineer. Making sure that things work right is
very important for engineers. What do you think would happen if our architect
didn’t make our house strong enough because he was lazy? It would fall down
and we could get hurt. Suppose the engineers at GM did only a few pages’ worth
of testing on the software for the brakes in our car. They might not work when we
need them and we’d crash. So when engineers build something or answer a
question about how to build things, we have to be sure we're right. We have to
be sure nothing is left out. It takes a lot of work.

As I was speaking, I realized this was the point of view I'd been struggling to
articulate. It explains why I wrote this book and the way I look at the problem
of testing object-oriented software. Testing is an integral part of software engi-
neering. Object-oriented technology does not diminish the role of testing. It
does alter some important technical details, compared with other programing
paradigms. So, this is a large book about how testing, viewed as software engi-
neering, should be applied to object-oriented systems development. It is large
because testing and object-oriented development are both large subjects, with a
large intersection. By the way—David hit two home runs later that afternoon
while I was torturing the truth out of some obscure notions.
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