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Preface

Micro-scale plasticity mechanics was developed in 1990s due to the
developments in micro-design, micro-manufacturing and microelec-
tronic packaging. It is a new field that attracts many researchers’
interests in the world.

Many experiments have found that materials display strong size
effects when the characteristic length scale associated with non-
uniform plastic deformation is on the order of microns. The classical
plasticity theories can not predict the size effects of material behavior
at the micron scale since there is no length scales including in their
constitutive relations. Apparently, some microscopic understanding of
plasticity is necessary in order to accurately describe deformation at
small scales. These considerations have motivated Fleck and
Hutchinson to develop a phenomenological theory of strain gradient
plasticity intended for applications to materials and structures whose
dimension controlling plastic deformation falls roughly within a range
from a tenth of a micron to ten microns. After that, a lot of scholars
make further contributions to this area with the considerations to
propose theories with more clearly physical backgrounds and more
simple frameworks.

In this book, we introduce the experimental backgrounds of the



Preface

micro-scale mechanics with the help of many typical micro-scale
experiments. After that, we systematically introduce several typical
micro-scale plasticity theories and their applications in explaining the
experimental results. Lastly, micro-scale plasticity theories are applied
in the fracture mechanics field to explain the cleavage fracture in the
scope of micro-meters near the crack tip. This book includes not only
the achievements of many foreign scholars, but also those of the
authors themselves.

Many scientists in China contribute to this area, such as Prof. K.
C.Hwang of Tsinghua University, Prof. G. K. Hu of Beijing Institute
of Technology, etc. Due to the limitations of the length of this book,
we did not focus on their achievements. The readers can consult them
face to face if it is necessary.

Chapters 1~5 and 8 are written by Shaohua Chen; Chapters 6~7
are written by Tzuchiang Wang.

SC would give his gratitude to his wife, Miss Wen-Ling, for her
collections and scanning of the electronic photos in Chapters 1~5 and 8.

The work of the two authors is supported by NSFC.

Shaohua Chen & Tzuchiang Wang
March 29, 2009 in Beijing
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1 Introduction

1.1 Brief introduction of experimental
observations

Many experiments have found that materials display strong size
effects when the characteristic length scale associated with non-uniform
plastic deformation is on the order of microns. For example, Fleck et al.
(1994) did torsion experiments of thin copper wires with different micro-
meter diameters and found that the non-dimensional torque increases by a
factor of 3 as the wire diameter decreases from 170 to 12 microns, while
no increase of work-hardening in simple tension is observed. In ultra thin
beams bending experiments, Stolken and Evans (1998) observed a
significant increase in the non-dimensional bending hardening moments
when the beam thickness decreases from 100 to 12.5 microns, while the
results for simple tension experiments display no size effects. For an
aluminum-silicon matrix reinforced by silicon carbide particles, Lloyd
(1994 ) observed that the flow strength increases when the particle
diameter was reduced from 16 to 7.5 microns with the volume fraction of
particles fixed at 15% . More convincing experimental evidence of the size

dependence of material behavior at the micro level is from the micro or
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nano-indentation hardness tests. The measured indentation hardness of
metallic materials increases by a factor of two when the depth of
indentation decreases from 10 microns to 1 micron ( Nix, 1989;
Stelmeshenko et al., 1993; Ma and Clarke, 1995; Poole et al., 1996;
McElhaney et al., 1998).

The classical plasticity theories can not predict the size effects of
material behavior at the micron scale since there is no length scales
including in their constitutive relations. The predictions based on the
classical plasticity theories for non-uniform deformation do not show a
size effect after normalization. However, there is an impending need to
deal with design and manufacturing issues at the micron level, such as in
thin films whose thickness is on the order of 1 micron or less, actuators
and micro-electro-mechanical systems (MEMS) where the entire system
size is less than 10 microns; microelectronic packaging where features are
smaller than 10 microns; advanced composites where particle or fiber size
is on the order of 10 microns; as well as in micromachining. The current
design tools, such as finite element method (FEM) and computer aided
design (CAD), are based on classical continuum theories, which may not
be suitable at such a small length scale. On the other hand, it is still not
possible to perform quantum and atomistic simulations on realistic time
and length scales required for the micro level structures. A continuum
theory for micro level applications is thus needed to bridge the gap
between conventional continuum theories and atomistic simulations.

Another objective that needs the development of a micron level
continuum theory is to link macroscopic fracture behavior to atomistic
fracture processes in ductile materials. In a remarkable series of
experiments, Elssner et al. (1994) measured both the macroscopic
fracture toughness and atomic work of separation of an interface between
a single crystal of niobium and a sapphire single crystal. The macroscopic
work of fracture was measured using a four-point bend specimen designed

for the determination of interfacial toughness, while the atomic value was
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inferred from the equilibrium shapes of microscopic pores on the
interface. The interface between the two materials remained atomistically
sharp, i.e., the crack tip was not blunted even though niobium is ductile
and has a large number of dislocations. The stress level needed to produce
atomic decohesion of a lattice or a strong interface is typically on the
order of 0.03 times Young’s modulus, or 10 times the tensile yield stress.
Hutchinson (1997) pointed out that the maximum stress level that can be
achieved near a crack tip is not larger than 4 or 5 times the tensile yield
stress of metals, according to models based on conventional plasticity
theories. This clearly falls short of triggering the atomic decohesion
observed in Elssner et al.’s (1994) exp;:riments. Attempts to link
macroscopic cracking to atomic fracture are frustrated by the inability of
conventional plasticity theories to model stress-strain behavior adequately
at the small scales involved in crack tip deformation.

Apparently, some microscopic understanding of plasticity is

necessary in order to accurately describe deformation at small scales.

1.2 An overview of strain gradient
plasticity theory

When a material is deformed, dislocations are generated, moved,
and stored, and the storage causes the material to work harden.
Dislocations become stored for one of two reasons: they accumulate by
trapping each other in a random way, or they are required for compatible
deformation of various parts of the material. In the former case the
dislocations are referred to as statistically stored dislocations ( Ashby,
1970), while in the latter case they are called geometrically necessary

dislocations and are related to the gradients of plastic shear in a material
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(Nye, 1953; Cottrell, 1964; Ashby, 1970). Plastic strain gradients
appear cither because of the geometry of loading or because of
inhomogeneous deformation in the material, as in the aforementioned
experiments. As examples: in the plastic twisting of a cylinder or bending
of a beam, the strain is finite at the surface but zero along the axis of
twist or of bending (Figures 1. 1(a) and 1. 1{(b)); in the hardness test the
strain is large immediately beneath the indenter but zero far from it; and
in the plastic zone at the tip of a crack in an otherwise elastic medium
steep gradients of plastic strain appear (Figures 1.1(c) and 1.1(d)); in
the deformation of plastic crystals containing hard, non-deforming
particles, local strain gradients are generated between particles; and in
the plastic deformation of polycrystals, the mismatch of slip at the
boundaries of the grains can induce gradients of plastic strain there
(Figures 1. 1{e) and 1. 1(f)).

These considerations have motivated Fleck and Hutchinson (1993,
1997) and Fleck et al. (1994) to develop a phenomenological theory of
strain gradient plasticity intended for applications to materials and
structures whose dimension controlling plastic deformation falls roughly
within a range from a tenth of a micron to ten microns. This theory has
been applied to many problems where strain gradient effects are expected
to be important, including analyses of crack tip fields (Huang et al.,
1995, 1997; Xia and Hutchinson, 1996). The Fleck-Hutchinson theory
fits the mathematical framework of higher ordér continuum theories of
elasticity (Toupin, 1962; Koiter, 1964; Mindlin, 1963, 1964), with the
strain gradients represented either in terms of the gradients of rotation in
the couple-stress theory of strain gradient plasticity ( Fleck and
Hutchinson, 1993; Fleck et al., 1994) or in terms of both rotation and
stretch gradients in a more general isotropic-hardening theory based on all
the quadratic invariants of the strain gradient tensor ( Fleck and
Hutchinson, 1997 ). The couple stress theory used by Fleck and

Hutchinson (1993) also bears some resemblance to the early work of
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k/UNIT LENGTH

Figure 1.1 Plastic strain gradient are caused by the geometry of
deformation {a, b), by local boundary conditions (c, d) or by the
microstructure itself (e, f). (Fleck et al., 1994)

Kroener (1962) who studied the connection between lattice curvature
associated with dislocations and couple stresses and developed a non-local
continuum theory based on that connection. The work-conjugate of the
rotation and/or stretch gradient of deformation defines the higher order

stress which is required for this class of strain gradient theory to satisfy
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the Clausius-Duhem thermodynamic restrictions on the constitutive model
for second deformation gradients ( Gurtin, 1965a, b; Acharya 'and
Shawki, 1995 ). From a dimensional consideration, an internal
constitutive length parameter, [, was introduced to scale the rotational
gradient terms in the couple-stress theory of strain gradient plasticity
(Fleck and Hutchinson, 1993; Fleck et al., 1994). This length scale is
thought of as an internal material length related to the storage of
geometrically necessary dislocations, and is found to be approximately 4
microns for copper from Fleck et al.’s (1994) twisting of thin wire
experiments, and 6 microns for nickel from Stolken and Evans’ (1997)
bending of ultra-thin beam experiments. The contribution of the strain
gradient could be symbolically represented as Ide/dx~¢e(l/D) where D
represents the characteristic length of the deformation field usually
corresponding to the smallest dimension of geometry (e.g., thickness of
a beam, radius of a void, depth of indentation). When D is much larger
than the material length, [, the strain gradient terms become negligible
in comparison with strains, and strain gradient plasticity then degenerates
to the conventional plasticity theory. However, as D becomes
comparable to [ as in the aforementioned experiments, strain gradient
effects begin to play a dominating role. The couple-stress theory of strain
gradient plasticity has had some success in estimating the size dependence
observed in the aforementioned torsion of thin wires (Fleck et al., 1994)
and bending of thin beams (Stolken and Evans, 1998). However, its
prediction of indentation hardness (Shu and Fleck, 1998) falls short of
agreement with the significant increase of 200% or even 300% observed
in micro-indentation or nano-indentation tests (Nix, 1989; De Huzman et
al., 1993; Stelmashenko et al., 1993; Ma and Clarke, 1995; Poole et
al., 1996; McElhaney et al., 1998). For this reason, Fleck and
Hutchinson (1997) proposed an extended theory of strain gradient
plasticity theory which includes both rotation gradient and stretch

gradient of the deformation in the constitutive model. The work-
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conjugates of rotation and stretch gradients of deformation are couple
stress and higher order stress, respectively Accordingly, two more
internal material lengths are introduced 1n addition to /

Fleck and Hutchinson (1993, 1997) used the dislocation theory to
motivate their formulation of strain gradient plasticity However, the
actual theory was formulated by replacing effective stresses and strains in
conventional plasticity with higher order effective stresses and strains
which contain strain gradient terms scaled by a phenomenological
material length to be determined from experiments. In other words, the
Fleck-Hutchinson theory 1s developed primarily based on the macroscopically
measured umaxal stress-strain behavior. Micromechanical experiments such as
micro-indentation, micro-torston and micro-bending were not used at the
stage of theory construction, but rather were used to fit the material
length /. The remarkable agreement between the strain gradient law
proposed by Nix and Gao (1998) and the micro-indentation data for
various matenals indicates that the linear relation between the square of
indentation hardness and the inverse of indent depth represents a
fundamental, intrinsic nature of deformation at the mucroscale This
provides a strong motivation to develop an alterative formulation 1n which
the strain gradient law 1n Nix and Gao (1998) 1s incorporated as a
fundamental postulate. Gao et al. (1999) proposed a multiscale,
hierarchical framework to facihitate such a marriage between plasticity
and dislocation theory. A mesoscale cell with linear variation of strain
field 1s considered. Each pownt within the cell 1s coastdered as a
microscale sub-cell within which dislocation interaction is assumed to
(approximately) obey the Taylor relation so that the strain gradient law
proposed by Nix and Gao (1998) applies On the microscale, the
effective strain gradient 7 1s to be treated as a measure of the density of
geometrically necessary dislocations whose accumulation increases the
flow stress strictly following the Taylor model. In the other words,

microscale plastic law 1s assumed to occur as slip of statistically stored



