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. Author’s Preface

Integration in function spaces arese in probability theory when a gen-
eral theory of random processes was comstructed. Here credit is cer-
tainly due to N. Wieger, who constructed a measure in function space,
integrals with respect to which express the mean value of furictionals of
Brownian motion trajectories. Browmian trajectories had previously
been considered as merely physical (rather than mathematical) phe-
nomena. A. N. Kolmogorov generalized Wiener’s construction to allow
one to establish. the existence of a measure corresponding to an
arbitrary random process. These investigations were the beginning of
the development of the theory of stochastic processes. A considerable
part of this theory involves the solution of problems in the theory of
measures on function spaces in the specific language of stochastic pro-
cesses. For example, finding the properties of sample functions is
connected with the problem of the existence of a measure on some space;

. certain problems-in statistics reduce to the calculation of the density
of one measure w. r. t..another one, and the study of transformations
of random processes leads to the study of transformations of function
spaces with measure. One must notethat the language of probability
theory tends to obscure the results obtained in these areas for
mathematicigns working in-other fields.
~ Another direction leading to the study of integrals in function space

s the theory and application of differentiatequations. A. N. Kolmogo-
rov has shown a connection between the solutions of second-order
parabolic differential equations and the means of certain stochastic
processes (i. e., integrals w. r. t, measures'in function space). Essential
progress was made here by M. Kac, who expressed the solution of the
equation .

Uy = Uzs + R
by means of an integral w. r. t. Wiener measure.
However, the most significant step in this direction was taken by
R. Feynman who put his “continual integral” (the Feynman integral)
at the basis of the structure of quantum mechanics. In particular, with



VI - Author'’s Preface

the help of such an integral he was able to express the solution of the
Schrédinger equation. The Feynman integral differs from the Wiener
integralin that there exists no completely-additive measure with respect
to which it can be written, so that the problem of the existence of the
Feynman integral is a difficult.one and has not yet been solved. The
mathematical aspects of the problem are treated in the survey by
Gel'fand and Yaglom [1]. The continual integral was subsequently used
to investigate evolution equations of order greatér than two. Unfor-
tunately, it turned out that no méasures in function space correspond
to such equations, but rather quasi-measures, i. e., signed, finitely-"
additive set functions of unbounded variation. The deepest i'csults here
have been obtained by Ju. L. Daleckii (see, for example, his survey [1]).

In this book we consider only measures on function spaces which are
taken to be separable Hilbert space. This is due to the fact that although
Hilbert space is not essential in many cases, a number of important
problems have been solved only for Hilbert space. To the latter is relat-
ed the problem of the existence of a measure. At the same time, con-
structions carried out in Hilbert space can often be easily generalized
to rather general linear spaces. There are remarks on this in the notes
collected at the end of the book. Some justification for restricting
ourselves to Hilbert space is also provided by the fact that Hilbert
space has so far been sufficient for applications.

The author has set himself the goal of an orderly presentation in
measure-theoretic language of the basic ideas of the theory of measure
and integration in Hilbert Space, including those which have heretofore
been available only in the theory of stochastic processes,. To the most
important questions we consider are related: 1) methods of defining a
measure and conditions for its existence, 2) measurable functions on :
Hilbert space with measure, 3) the construction of systems of grtho-
gonal functions, 4) the absolute continuity of measures and the calcu--
lation of the density of one measure with respect to another, 5) the
theory of quasi-invariant measures, 6) transformations of measures
under transformations of the space and 7) surface integrals and Green’s
formula in Hilbert space. A considerable part of this material is
published here for the first time.

In bibliographic notes collected at the end of the book we have
attempted to clarify the role played by various authors in the develop-
ment of the above ideas.

AV, S_korohod



Translator’s Preface

One of the satisfying aspects of mathematics is the ease (relative to
other human pursuits) with which progress in certain of its tangled
branches.can be summarized and unified. That this is still not Jeder-
manns Sache is shown by the fact the subject of this book has waited
fifty years for review and summary. To be sure, the introduction
of Wiener’s Differential Space in the early 20’s was followed by a period
in which it was viewed by many as a curiosity and neither understood
nor appreciated. But the rapid development since 1923 of quantum
physics and of the broad concept of “adaptive control’” (two of the
most exciting of the many directions taken by applied mathematics)
and their increased (and occasionally incorrect) use of integration in
function spaces has indicated that it is high time for such a book.
The author is an expert on the subject whose various researches in
the theory of stochastic processes have been closely connected with
several areas of applied probability which are growing so rapidly that
they often leave the rigorous justification of their techniques behind.

Skorohod has provided integration with respect to measures in
function (Hilbert) space with a rigorous foundation in this importaht
book. Through the good offices of Springer-Verlag and Nauka in
Moscow I was able to begin translating it before its publication in the

Soviet Union, which has advanced its avallablhty in_translation by
several months.

I have corrected a number of misprints and typographical omissions
and occasionally added what I believe to be a clarifying footnote. As
usual, it was necessary to compile an index. Otherwise, this edltlon
is the same as the original.

Thanks are due to Professor ‘Skorohod for carefully readmg the

manuscript and thus clarifying many obscurities, and to my erstwhlle
companion M. for various favors.

Manchester, England, June 1974 K. Wickwire.



Introduction

The general theory of measures has been constructed for arbitrary meas-
urable spaces, i.e., for sets on which a s-algebra of measurable subsets
has been selected. It can thus be shown that when the measurable space
is linear and the ¢-algebra is related in a certain way to the algebraic
structure of the space, then no special theory is nece$sary. This occurs
if we restrict eurselves to a finite-dimensional space with a ¢-algebra
of Borel sets. Of course, in this case as well there arise special problems
connected, for example, with invariant measures. However, no special
theory is1equired for their solution. The situation changes consider-
ably if we go over to infinite-dimensional spaces. For many important
problems it is still impossible to give solutions as-simple as those
in the finite-dimensional case. Here are two examples of such problems.
The first of these is that of defining a measure. In the finite-dimensional
case, it is sufficient to define a measure on all parallelepipeds with
sides parallel to the coordinate axes; the values of+the measure on
these sets are defined by some (distribution) function, so that to each
such function there corresponds a measure. In the infinite-dimensional
case this does not hold: there need not correspond a measure to each
distribution function. The existence problem for a measure is far
from being solved for all spaces. The second problem concerns
conditions for the absolute continuity of measures and the form of
the corresponding density. In the finite-dimensional case it is solved
by differentiating the distribution function. In the infinite-dimensional
case, the solution of this problem, even for concrete measures, is not
at all trivial: .

Hilbert space is the simplest and most natural generahza.t!on of
a finite-dimensional space; in it are. manifested all of the difficulties
connected with an infinite number of dimensions. At the same time,
the theory for this space has been most completely developed, so
that a coherent presentation of it is already possible. The present
book is devoted to this theory.

‘We list briefly the basic problems whxch will be treated and also
mention the principal results.



Introduction XTI

Chapter 1 is devoted to methods of defining measures. The notions
of finite-dimensional distribution, weak distribution and characteristic
functional are defined and the Minlos-Sazonov theorem is proved,
which gives necessary and sufficient conditions for the existence of
a measure with given weak distribution (or characteristic functional).
In this chapter we also define the class of Gaussian measures, which
is important — especially for the theory of probability.

In the second chapter we consider measurable functions, in partlcular
linear and polynomial functions. It is necessary to note that a pecu-
liarity of infinite-dimensional spaces is also manifested here: in the
finite-dimensional case a measurable polynomial is necessarily con-
tinuous, but in Hilbert space this is not so. With the aid of a certain
procedure which we describe it is possible to reduce the investigation
of polynomial functions to the study of linear ones on some other
space. We also consider various systems of functionswhich are orthogonal
w.r.t. a given measure.

In Chapter 3 we study general questions of absolute continuity of
measures in Hilbert space. As a preliminary we define and prove the
existence of conditional measures and we also prove theorems on the
convergence of martingales and semi-martingales. The general assump-
tions are adapted to product measures, Gaussian measures and mixed
measures, i.e., measures obtained by mixing measures depending on
a parameter and integrated w.r.t. such a parameter. We remark
that a large number of papers of a probability-theoretic or applied
character have been devoted to the question of the absolute continuity
and singularity of Gaussian measures.

Chapter 4 investigates admissible shifts (translations) of a measure,
i.e., shifts transporting a measure into another one which is absolutely
continuous w.r.t. the original. The structure of the set of admissible
shifts is studied and a condition for the admissibility of a shift is found
in terms of the derivative of a measure w.r.t. a given direction. A pecu-
liarity of infinite-dimensional space is the lack of a Lebesgue measure
(invariant w.r.t. a shift) and even of a measure for which all shifts
are admissible. Thus, measures are of interest for which there exists
a sufficiently rich set of admissible shifts, for example a linear set,
dense in the whole space. Such measures are said to be quasi-invariant.
We will give a complete description of these.

Finally, in Chapter 5 we generalize some formulas of classical
analysis to the infinite-dimensional case. The first of these is the
substitution formula for integrals. In the case where the integral is
taken w.r.t. a Gaussian measure, this topic has been the subject of lively
discussion in the literature of probability theory for more than twenty
years. Another problem relates to the construction of a surface integral
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connected with a measure which is not concentrated on the surface
(exactly such a situation holds in the evaluation of the Lebesgue area
- of a surface from the Lebesgue volume it encloses.) We obtain a gener-
alized Gauss formula for the construction of such a surface integral

The reader is expected to be acquainted with the basic theory of
Hilbert space as well as that of measure and integration. In view of
the large number of texts on these topics it will not be necessary to
single out any for special recommendation; the author has endeavored
to reduce to a minimum the use of definitions not given explicitly
in the book as well as the number of unproved theorems. The notation
is more or less customary making it unnecessary to offer any special
explanations. References to the literature are not as a rule given in the
text and are collected in notes at the end of the book.
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Chapter 1. Definition of a Measure in Hilbert Space

§ 1. Measurable Hilbert Spaces

Let X be a real separable Hilbert space with elements #, y, 2, etc. Real
numbers will be designated by small Greek letters; « x + f# y and (x, y)
will denote, as usual, the operations of mrvltiplication of a vector (ele-
ment of X) by a scalar, vector addition and the scalar product of vectors.
The norm of a vector will be designated by

2] = V(%) .

Subsets of X will be denoted by large Latin letters, classes of subsets by
large Gothic letters. A class of sets 2 in which we allow the operations
of set difference, union and intersection is called a ring. A ring of sets %
containing X as an element is called an algebra. An algebra of sets in
which the union operation can be applied countably many times is
called a o-algebra.

In the sequel the letter B will denote the o-algebra of Borel sets in
X, i.e., the minimal ¢-algebra of subsets of X containing all open sets
(because of the separability of the space it is sufficient that the o-alge-
bra contain all spheres.) The measurable space (X, B), i.e., the set X
with g-algebra of measurable sets will be called a measurable Hilbert
space.

We will study finite measures u defined on (X %B). In this connec-
tion it 1s often convenient to assume that the measure y is normalized,
i.e., u(X) = 1. The primary aim of this chapter is to propose a method

-of constructing measures on (X, B). This method is essentially equi-
valent to the method of Lebesgue for constructing the measure on the
line: first the measure is constructed on a certain class of elementary
sets and then extended to the minimal ¢-algebra containing these sets
and completed. The latter operation (completion) will not be carried
out since we only need the measure on %B. 4

We will investigate certain classes of “simple” sets on which the
values of the measure will be assigned. Let L be a finite-dimensional
subspace of X, P; the orthogonal projection operator on Land 4 a Borel .
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4

set from L. A set of the form
{x: P x¢€ A}

will be called a cylinder set and the set 4 is called its base (we also say
that this is a cylinder set with base in L). The class of all cylinder sets
with basesin L is obviously a o-algebra which we will write as B%, where-
by BL ¢ B. The union of all g-algebras B” is an algebra. Indeed, if 4,
and A4, belong to B and B, then choosing L = L, + L, (the sum
of the subspaces), we get
A; e B i=1,2; A, ud,eBY; A, nd,eB"; A4, — A4,¢B".
We denote this algebra of sets by B,. It is called the algebra of cylinder
sets. Sets from B, are also considered as ‘“‘elementary” for the con-
struction of a measure on (X, B). To convince ourselves that the value
of the measure on 9B, uniquely ‘defines that on B it is necessary to
show that the o-closure of B, contains B (i.e., B is the smallest
g-algebsa containing B,). We will show this below and immediately note
that the algebra 9, still contains too many sets (X has too many finite-
- dimensional subspaces). It turns out that to define the measure it is
sufficient to have a certain chain of increasing subspaces L, ¢ L, , for
which U L, is dense in X. Then U Bl — B, will also be an algebra

of sets. Smce B ¢ By, it follows from the fact that the o-closure of B,
coincides with 9, that the o-closure of %, coincides with 8. Let us
prove the first assertion. It is sufficient to show that the o-closure of
B, contains any closed sphere S in X since an open sphere can be re-
presented as a countable sum of increasing closed spheres. Set

S =xijx = al <o} .
Denote by P, the Qpefator pfojecting onto L, and put
= {x: |P, x—P,a| <o}
The set S, belongs to B and S, > S. We will prove that
‘ 5= QS (1)

In fact,if y ¢ S, thenly—ar—g+6 6>0
But
fm Py(y — o) =y — & \

(in the sense of convergence in X). Thus, |P,(y — a)| — |y — a| which
means that for large enough = |P,(y —a)| = |P,y — P,a|l >0,
&S, We have proved (1). -

The advantage of the algebra B lies in the fact that it is the union .
of countably many ¢-algebras of the form B*. We now note that sets
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of the algebra 8% are completely determined by Borel sets of the finite-
dimensional Euclidean space L (L will be such a space if it is considered
by itself and not as a subset of X). If L is an n-dimensional space,

{ey; k=1, ..., n} is an orthonormalized basis in L and x = ¥ &, ¢,
is a decomposition of an arbitrary x € L w.r.t. this basis, then finite
sums of sets of the form

{x:ahsg,,g_ﬂ,,.;k= 1,...,”; wd wgah<ﬂhgm}

(these sets are called rectangles) generate an algebra of subsets of L, -
whose o-closure coincides with the g-algebra B, of Borel sets of L.
The same property will be possessed by the algebra 9, generated by
rectangles with rational &, and f,. Let U“ be the algebra of cylinder
sets with bases in ;. Then the o-closure of A* coincides with B~
Consequently, for an increasing sequence of subspaces L, for which
U L, is dense in X, the algebra

A = u Pl

(we assume that bases in the. L, are chosen in a compatible wa.y,
i.e,, the basis in L, is obtained from that in L, by adding the ba.sxs
from the orthogonal complement to L, in L, ,; in this case %, will
actually be a set algebra since U™ ¢ 2[""“) is such that its o-closure
contains B. Each of the algebras %% contains only a countable number
of sets, which implies that %, also contains a countable number of sets.
We recall that the g-algebra obtained from the o-closure of a denumer-
able algebra of sets is said to be separable. By the same token, we have
established that the o-algebra 9 is separable.

The algebras B, and %, make the measure problem easier since they
contain fewer elementary sets. However, they depend on a certain set
of finite-dimensional subspaces (and even on the bases in these sub-
spaces), so that the definition of measures by means of these algebras
possesses a non-invariant character. Hence, in those cases where it is
necessary to describe the invariant propertles of measures we will use* .
the algebra .

§ 2. Weak Distributions

Let u be some normalized measure on (X, %8). For each finite-dimen-
sional subspace L of the space X we can consider the restriction of this
measure to B*. Now define the measure pr on the o-algebra B, of
Borel sets of L as fellows:

#L(A) =u({x: PLxecd}),
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where P, is projection onto the subspace L. Then the fact that u,

is a measure follows from the fact that for a sequence of non-overlapping
sets 4, of B,, the sets

P (U A,) = U Pr'(4,), Pi4,)

are also non-overlapping (here Pz'(4) is'the inverse image of the set 4
under the projection operator P;, i.e., Pr'(4) = {x: P x¢ A}).
The measure p, is called the projection of the measure u onto the
subspace L.

Hence, with each measure 4 we can associate the set of its projec-
tions {u,} on finite-dimensional subspaces of X. Obviotisly, knowing'
4z, one can determine u on B~. Hence, knowing u;, for a sequence L,

. of linear subspaces for which L, ¢ L, ., and U L, is dense in X, we

- can define u on U B and since the a—closure of this algebra comc?e

with B we can defme i on B by the same token. This means tfat
knowing {u, } or {ur,}, where L, is the indicated sequence of subspaces;
we can uniquely retrieve the measure.

The totality of all projections of a given measure are called the
finite-dimensional distributions of the measure. The measures u;, being
projections of the same measure are compatible in a certain sense for
different #. This compatibility condition follows from the fact that
the base of a cylinder set is chosen non-uniquely. Let L, ¢ L; and
A €%B;. Then the set P;'(4) can also be wntten as Pr, ‘(A,) where
Ay € %,_ is defined by the equahty Yol .

l—{x xeL,,P,_‘xeA}

Since P;_“(A) = Pz(4,), we have : Edli 4
pr(d) = p(Pr(A)) = pu(PL] (4s) = pr(4) !

Since 4y = Pz(4) n L,, the compatlblhty candition can be written
in the following form: forall L, ¢ L, and 4 € B *

pr(d) = pr, (PL(A) 0 Ly) ot 0y

The family of measures {,}, defined for all fmte-dxmensxona.l sub-

spaces' L and satisfying the compatibility’ condltlon (j) is called a weak
distribution. g

If L, is a sequence of subspaces, L, ¢ L,._H. UL, dense in X and

M, 1 a sequence of measures on %,_‘ satlsfying the compatlblhty

condition
J

.“'Lu(A) .uLn+1(P_1(A) n Lﬁ+1)

then the sequence {u;} is called a scquence of finite~dimensional
distributions. -
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From the results above it follows that to each medsure on (X, B)
there con'esponds some weak distribution, and different weak dis~
tributions correspond to different measures. The problem of defining
a measure with the help of weak distributions could now be solved quite
easily if to each weak distribution therecorresporrded some measure on
(X, %B). Unfortunately this is not the case. We will now derive condi-
tions which must be satisfied by a weak distribution in order that some
measure correspond to it.

Lemma 1. Let S, be a sphere of radius g: S, = {x: |x| < p}. The
weak distribution {p; } will be generated by some measure p on (X, B) iff,
for every € > 0 there exists any > 0 such that for all L

ur (S, NL)y=1—¢& when p >19.

Proof. Necessity. If {u,}is generated by the measure u, then cheos- -
ing 7 such that u(S,) >1 — & (this is possible since lim u(S,) =
= u(X) = 1), we obtain g

pr (Se N L) = p (P (S, N L)) = (S = u(S,) >1 —¢.

The proof of sufficiency is more difficult. We define on the algebra
B, = U B a finitely additive function u be means of
L

uld) = uy(A), Ac®B-.

To convince ourselves that u can be extended to a measure defined
on (X, ), it is sufficient to show that u is continuous on B, i.e., that
for an arbitrary sequence of sets 4, € B, for which 4,>4,,, and
N 4, = ¢ (¢ is the empty set),

lim () = 0. - (2)

Let A, be a cylinder set with base in L, and L, ¢ L,,,. Let B,c L,
be the base of 4,. We remark that it is sufficient to prove (2) merely
for sets with closed bases. Indeed, choosing closed sets C, ¢ B, such
that u; (B, — C,) < &, and then taking

n {%: P,__xeCm} 17 4

m=1

we obtain closed sets for which

.“L.(Bn - Dn) = Z By, (Bn = Cm) = Zsm

m=1 m=1

Hence, if 4, = P7}(D,), then ’
Aprcd,NA,=N4, and  pd)<pd,)+ e,

m=1
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If for cylinder sets with closed bases lim #(4,) = 0, then since
Z‘ &, can be taken as suitably small, (2) is a.lso fulfilled. Hence, it

m=1

will be assumed that the B, are closed sets. Then the A wﬂl be weakly
closed sets (if x, X xand %, € A, then x ¢ 4,). For all p the set S, is
also weakly closed and weakly compact. Since

n[(’]A]:q&,
n=1
U [S, n4,] = ¢ and since the sets S, n 4, are weakly closed and

ne=1{
weakly compact and S, n A,)S, nd,;, for somenS,nA,=¢.
This means that

w(Ay) = pr,(An) < prfLly) — pr(le 0 S) < e,
provided that ¢ > % ( and ‘e are defined in the lemma). From the
arbitrariness of &€ > 0 there follows (2). . []

Remark. Let L, be a sequence of finite-dimensional subspaces for
which L, ¢ L, and |J L, is dense in X, and p,, a sequence of finite-di- -
mensional distributions. This sequence generates some measure iff for
arbitrary e > 0 there exists ann > 0 such that foralln g, (S, nL,) >
=1 — & when p > 1. The proof of this fact is carried out as in the
proof of Lemma 1.

It is interesting to note that some classes of functions can also be
integrated w.r.t. a weak distribution. To these functions, for example,.
are related the ““cylinder functions” defined below. The function ¢(x)
is called a cylinder function if for some finite-dimensional subspace L
it is B’-measurable. In other words, every cylinder function @(x)
has the form

(%) = @u(Pr %), (3):
where ¢, is some B,;-measurable function defined on L, and L is a
finite-dimensional subspace of X. For each nonnegative cylinder
function ¢(x) we define the “integral™ w.r.t. the weak distribution
{ur} which will be denoted by u, to distinguish 1t from a measure.
This integral is defined by the relation

J o maldn) = fpul) plds), )

where (p,; is as in the representation (3). Since (3) is not unique, we
must show that

J o(x) pe(dx)
does not depend on the choice of L. Let L, ¢ L, and

(%) = @ (Pr, %) = @r,(PL, %) .



