T ————, | = — T 1 T ———

TURING IE}MQJE‘PM@“ L-* Micresoft

Solid Code

Pl HERER
ST AR

€34y

Donis Marshall
[X] John Bruno =

F—REEENHFREEANMIRBREEIR A B
CRABIMTER R REHR LD KRN
- RHFFAZAREIDIEINEE

o

% A BCHIS H H iR AL

POSTS & TELECOM PRESS

EBERGE (CIP) ¥R

BATIEER ERETT KB F—Solid Code: #C/ (38)
IEk/R (Marshall, D.), () fifi# (Bruno,J.) .
—db5: ARMBEH AL, 2009.6

(FARBFEITAE)

ISBN 978-7-115-20679-4

[R IO IL&EAFR-FL V.
TP311.52

v [i A B 4 CIPBURAZ 7 (2009) 250506175

mERE

AP THE S RERBRRAESSE, WEKAFENES N E. BHHSHEICEEERFEERR
TREFEAR, XA UM ATET BRI, et R = s g4 o A B & . [\
i, A5t R T 154K/ 7 Windows Live Hotmail 1 Live Search % F BA B B3 FF & R o

AEESEZRRMTT RN R 3.

B R Bt A
BRINERREHEF R (FEXA)

¢ % [3%] Donis Marshall John Bruno 3
TR L

o NRIHEBEHEAST Rk s 148
HE4s 100061 R 315@ptpress.com.cn
Mk http://www.ptpress.com.cn
Je B BNV ER R PR 2 =] Bl

¢ JFA: 800X1000 1/16

Epgk: 21
FH 403TF 20094E 6 A% 1 i
Ep¥: 1 -3 000/H 20094F 6 A b5 1 IRERA

FERAFRICS EF: 01-2009-1525%5
ISBN 978-7-115-20679-4/TP
EHr: 69.000T
EERS ML (010)51095186 EPFEREBHAL: (010067129223
BB : (010)67171154

R ¥ 7= BA

© 2009 by Microsoft Corporation. All rights reserved. Original edition, entitled Solid Code by
Donis Marshall and John Bruno, ISBN 978-0-7356-2592-1, published by Microsoft Press in 2009.

This reprint edition is published with the permission of the Syndicate of the Microsoft Press.

Copyright © 2009 by Donis Marshall and John Bruno.

THIS EDITION IS LICENSED FOR DISTRIBUTION AND SALE IN THE PEOPLE’S

REPUBLIC OF CHINA ONLY, EXCLUDING HONG KONG, MACAO AND TAIWAN, AND
MAY NOT BE DISTRIBUTED AND SOLD ELSEWHERE.

A58 Jr R E P R A AR

AT 5 SR ERR R A e RRAE BN RIS ot AR R AR . SRS M B AT, A
MR KR R PP R AR 2

BERRA U BRAE A N RIEATE G, BRI BT BUX A QW X R A1) 35 8 R AT

FBUIT A, ARBUL T

AT RTE

ot

\\g
=

p

~

XA PRI T AR B, NEW KRR, et Bt
s BB AR, WIS TF R AR R TT R R
John Robbins, %43 K KV, Wintellect €] 4 AZ —

AR T RARAE, R T BSh S8 SR SRR A RS AR B TR LS
PRI RS B ok B ELSE B R BIRTSE . RN ARk, 51 FEHE AN BT
Hk RATFGEF Eed . ”

Janson Blankman, #3k/ 3] 34+ TA2)F

“We—%A 20 SEERIETF R AW E R, RIMRE ARG EIUFRERRE K.
KRS A BB NP — B, ARAWTESE, T HERERS RIS FRATF R EMPI I . ”
Don Reamey, &3k,] 84 TA2)P

“ A0 TARA B IE BOAR A FF B A ROR IR R T 2 5, Hrp7ai T] LASE BPA2ARE
AL R R SLRAR . B ERMAAERKTFLR, KEESAABIER! 7
John Alexander, AJI #k4FEBAIKA, MK KRE L

“3 RGN IT Bl A —AH, RS RN EAR. BHAMY
T R T AR SRR, SRR LA AT 7
——Andres Juarez, 3k 3] 7 fo KA E

CRRAAANE, B TIFSEAELE, WL 2R LT R AR, BT
BRI TE A AR . AR A e & BUAE R RAE TR 2 PRINM IR T 5, I BARYF I i
TR RN BUEREBATER AT A AU

Venkat B. Tyeer, %4k 2 4] MK 22

YRR FFEAR NFIFFERE LRI S ERARE—ENE, ERrEd
(T % S SE F TARATABE A IF & A EE EA AT 5.7
John Macknight, 2% 34k 4 T42)5

Foreword

Software engineering is not engineering. As a software developer, | would love nothing more
than to say | am an engineer. Engineers think through and build things that are supposed

to work the first time due to careful planning. So having the word “engineer” in my job title
would be very cool indeed.

Let's look at what would happen if the normal software engineering approach were applied
to aerospace engineering. A plane is sitting at a gate boarding passengers, and an aero-
space engineer—on a whim or forced by management—decides to replace the tail section.
Because it's just a tail section, let’s just rip it off and stick another one on right there at the
gate. No problem, we can make it work! If aerospace engineering were approached like soft-
ware engineering, | think the passengers would stampede to get off that plane as fast as pos-
sible. But those are the kind of changes that are made every day in major software projects
the world over. The old joke is that “military intelligence” is an oxymoron, but I'd have to say
that it fits “software engineering” as well. What makes this even more troubling to me is that
software truly rules the world, but the approach nearly everyone takes to making it can in no
way be called engineering.

Why is it that | know the physical computer I'm using right now will work, but the program
I'm using, Microsoft Word, will screw up the auto numbering of my lists? While my electrical
engineering friends will not be happy to hear this, hardware is easy. The electrical engineer
has a limited number of inputs to work with, unlike the essentially unlimited number given to
software developers.

Management also considers electrical engineering “real engineering,” so management gives
the appropriate time and weight to those efforts. The software business, as a distinct field,
is not a mature industry; it really hasn't been around that long. In fact, | myself am slightly
younger than the software business, so my youthful look reveals some of the problem. If |
were as old as electrical engineering, I'd be writing this from the grave.

Another difficulty with software development can sometimes be the software developers
themselves. Realistically, the barriers to becoming a software developer can be quite low. I'm
a prime example: | was working as a full-time software developer before | had a bachelor’s
degree in computer science. Because | was able to “talk the talk” in interviews, | was given a
job writing software. None of my employers really cared about my lack of education because
they could hire me cheaper than someone with a degree.

All real engineering fields require you to achieve ambitious certification criteria before you
can add the Professional Engineer (PE) designation to your name. There's nothing like that
for the software industry. That’s due in part to the fact that no one can agree what all soft-
ware developers should know because of the newness of the industry. In other fields, the PE

Foreword

designation appropriately carries huge weight with management. If a certified engineer says
a design won't work, she won't sign off on the plans and the project won't go forward. That
forces management to take the planning process much more seriously. Of course, by sign-
ing off on a project, the PE acknowledges liability for ethical and legal ramifications should
things go wrong. Are you ready to sign off on the ethical and legal liability of your software’s
design? Until we get our industry to that point, we can't really call ourselves engineers in the
traditional sense.

The good news is that even in the nearly 20 years | have been in the software develop-
ment business I've seen huge changes for the better. Senior management is finally getting
the message that software project failures cost companies serious amounts of money. Take
a look at Robert Charette's “Why Software Fails” in the September 2005 issue of the /EEE
Spectrum magazine (http.//www.spectrum.ieee.org/sep05/1685) for a list of spectacular fail-
ures. With the costs so high, some senior management are finally committing real resources
to get software projects kicked off, planned, and implemented right the first time. We still
have a long way to go, but this buy-in for real planning from management is one of the big-
gest changes I've seen in my time in the industry.

On a micro level, the best change in software development is that nearly all developers are
finally serious about testing their code. Now it's fortunately rare to hear about a developer
who throws the code over the wall to the QA group and hopes for the best. This is a huge
win for the industry and truly makes meeting schedules and quality gates achievable for
many teams. As someone who has spent his career on the debugging and performance-
tuning side of the business, I'm really encouraged about our industry becoming more mature
about testing. Like all good change, the testing focus starts with the individual and the ben-
efits work their way up the organization.

What's also driving change is that our tools and environments are getting much better. With
.NET, we have an easy way to test our code, so that means more people will test. Also, the
abstraction layers are moving up, so we no longer have to deal with everything on the com-
puter. For example, if you need to make a Web service call, you don't have to manually open
the port, build up the TCP/IP packet, call the network driver, wait for the data to return, or
parse the return data. It's now just a method call. These better abstraction layers allow us to
spend more time on the important parts of any software project: the real requirements and
solving the user’s problem.

We still have a long way to go before our field is a real engineering field, but the signs are
encouraging. | think a big change will occur when we finally start treating testing as a real
profession—one that is equal to or more important than development. While | probably
won't see the transition to software engineering before | retire, I'm very encouraged by
the progress thus far. Let's all keep pushing and learning so we can finally really be called
engineers.

Foreword 3

This book, Solid Code, is a great step in the direction of treating software as an engineering
discipline. Bookstores’ programming shelves groan under two types of development books.
The first kind is the hand-waving software-management type, and the second is the gritty
internals-of-a-technology type; I'm guilty of writing the latter. While those books have their
uses and are helpful, the types of books we are missing are the ones that talk about real-
world team software development. The actual technology is such a small part of a project;
it's the team and process aspects that present the biggest challenges in getting a software
project shipped. Solid Code does a great job of hitting that super hard middle ground be-
tween the management books and the technology books. By covering ideas from how to
model software to security design to defensive programming, Donis and John, show you how
the best practices you can apply to your development will make it even better. Reading Solid
Code is like experiencing a great project lead by a top development manager and working
with excellent coworkers.

The whole book is excellent; | especially loved the emphasis on planning and preparation.
Many of the projects that my company, Wintellect, has had to rescue are the direct result of
poor planning. Take those chapters to heart so you'll avoid the mistakes that will cost you
tons of money and time. Another problem the book addresses is the tendency to leave per-
formance tuning and security analysis for the very end of the project. As the title of Chapter
4 so succinctly points out, “Performance Is a Feature.” The recommendations in those chap-
ters are invaluable. Finally, the book’s emphasis on real-world coding and debugging will pay
dividends even when the code goes into maintenance mode. Even though I've been working
in the field nearly 20 years, | picked up a lot of great ideas from Solid Code.

Every developer needs to read this book, but there are others in your company who need to
read it as well. Make your manager, your manager’s manager, and your manager’s manager's
manager read this book! The one question | always get from senior managers at any com-
pany is, “How does Microsoft develop software?” With the Inside Microsoft sections in most
chapters of Solid Code, your management will see how Microsoft has solved problems in
some of the largest applications in use today. Now start reading! It's your turn to help move
our industry into a real engineering discipline!

John Robbins
Co-founder, Wintellect

Acknowledgements

Isaac Newton has been credited with the phrase, “If | have seen further, it is only by stand-
ing on the shoulders of giants.” That statement is certainly applicable to this book, especially
when considering the practices, perspectives, and experiences contained within it. More
specifically, those shoulders belong to the many people who have contributed to this project.
Although our names adorn the cover, we owe much of the credit to the individuals who have
helped bring this book to life. We are grateful for their efforts and support throughout this
project, and would like to acknowledge them individually.

For starters, we could not have done it without the team at Microsoft Press. We would like
to thank Ben Ryan, Devon Musgrave, and Melissa von Tschudi-Sutton for ensuring a high-
quality outcome and keeping the project on schedule. Additionally, we would also like to
thank the technical editor Per Blomqvist and copy editor Cindy Gierhart for their invaluable
contributions and feedback.

As mentioned, this book includes practices, perspectives, and experiences. Many of these
elements would not have been included without the contributions, support, and feedback
of the professionals from Microsoft and the industry. Specifically, we would like to thank
the contributors and reviewers: Jason Blankman, Eric Bush, Jacob Kim, Don Reamey, Dick
Craddock, Andres Juarez Melendez, Eric Schurman, Jim Pierson, Richard Turner, Venkatesh
Gopalakrishnan, Simon Perkins, Chuck Bassett, Venkat lyer, Ryan Farber, and Ajay Jha.

There is also a special acknowledgement for Wintellect. Wintellect is a consulting, debug-
ging, and training firm dedicated to helping companies build better software faster through
a concentration on .NET and Windows development. Its services include in-depth, multiday
.NET on-site and open enroliment training as well as development and consulting services
including emergency debugging. The company also produces Devscovery conferences—
three-day multitrack events targeting the intermediate to advanced developer. For more
information about Wintellect, visit www.wintellect.com.

John Robbins and Jeffrey Richter of Wintellect provided invaluable insights and timely feed-
back. Thanks!

Donis Marshall | have written several books. However, this is my first book with a coauthor.
| have been left with one important question after the completing the book. Why did | not
have a coauthor on earlier book projects? John Bruno was an incredible asset to this project.
His broad knowledge and insights have made this book an important read for any technolo-
gist in the Windows arena. John also possesses a rare attribute among authors—timeliness.

John Bruno Writing a book is a commitment that often affects those closest to you. |
would like to first thank my wife, Christa, and my two sons, Christopher and Patrick, for
their patience, understanding, and sacrifice during the development of this book. Their love

Acknowledgements 5

and support inspire me to be the best man | can be, everyday. Additionally, | am grateful to
Donis Marshall for inviting me to join him on this project. | sincerely appreciate his friendship
and the opportunity to work with him on such an important subject. | have been fortunate
throughout my life to have known many creative and insightful people. To those of you who
have always been there to inspire, encourage, challenge, and support me, | thank you.

Introduction

Software development has evolved greatly over the past several years. Improvements in
programming languages and rapid development tooling, like .NET and Visual Studio 2008,
have driven the software industry to build higher-quality software, faster, cheaper, and with
more frequent upgrades or refreshes. Despite this continued demand for more software and
the evolution in tools and processes, building and releasing quality software remains a dif-
ficult job for all participants of software projects, especially developers. Fortunately, this title
encapsulates the essence of the best-in-class engineering practices, processes, policies, and
techniques that application developers need for developing robust code.

Solid Code explores best practices for achieving greater code quality from nearly every facet
of software development. This book provides practical advice from experienced engineers
that can be applied across the product development life cycle: design, prototyping, imple-
mentation, debugging, and testing. This valuable material and advice is further supplement-
ed by real world examples from several engineering teams within Microsoft, including, but
not limited to, the Windows Live Hotmail and Live Search teams.

Who Is This Book For?

Solid Code has something for every participant in the software development life cycle. Most
specifically, it is targeted toward application developers who are seeking best practices or
advice for building higher-quality software. Portions of this book illustrate the important role
of the engineering process as it relates to writing high-quality code. Other parts focus on the
criticality of testing. However, most of this book focuses on improving code quality during
design and implementation, covering specific topics like class prototyping, performance, se-
curity, memory, and debugging.

This book targets both professional and casual developers. Readers should have a basic un-
derstanding of programming concepts and object oriented programming in C#. There are no
skill level expectations. Solid Code is about the practical application of best practices for man-
aged code application development. The topics discussed within the book should resonate
with managed code developers of all skill levels.

Organization of This Book

Solid Code is organized similarly to the application development life cycle. The chapters are
not separated into parts, but rather grouped according to four key principles. These prin-
ciples are outlined in Chapter 1, “Code Quality in an Agile World”, and include: Focus on
Design, Defend and Debug, Analyze and Test, and Improve Processes and Attitudes.

Introduction 7

Focus on Design One of the great themes of this book is the importance of thought-
ful design as a means to improve overall product quality. To support this theme, prac-
tices such as class design and prototyping, metaprogramming, performance, scalability,
and security are explored.

Defend and Debug Although great designs are critical to building a high-quality
software application, it is equally important to understand the pitfalls that hinder de-
livery of bug-free code. Topics such as memory management, defensive programming
techniques, and debugging are all discussed in the context of this principle.

Analyze and Test Even the greatest programmers produce bugs despite following
the recommended best practices. Therefore, it is important to discuss code analysis and
testing as methods for further improving code quality.

Improve Processes and Attitudes Beyond best practices, engineering processes and
culture can have a great impact on the quality of the work being produced. We explore
several key topics for improving the efficiency of the team as well as their passion for
quality.

System Requirements

You will need the following hardware and software (at a minimum) to build and run the code
samples for this book in a 32-bit Windows environment:

Windows Vista, Windows Server 2003 with Service Pack 1, Windows Server 2008, or
Windows XP with Service Pack 2

Visual Studio 2008 Team System

2.0 gigahertz (GHz) CPU; 2.6 GHz CPU is recommended

512 megabytes (MB) of RAM; 1 gigabyte (GB) is recommended

8 GB of available space on the installation drive; 20 GB is recommended
CD-ROM or DVD-ROM drive

Microsoft mouse or compatible pointing device

The Companion Web Site

This book features a companion Web site that provides code samples used in the book.
This code is organized by chapter, and you can download it from the companion site at this
address: http.//www.microsoft.com/learning/en/us/books/12792.aspx.

Introduction

Find Additional Content Online

As new or updated material that complements this book becomes available, it will be pub-

lished online to the Microsoft Press Online Developer Tools Web site. This includes material

such as updates to book content, articles, links to companion content, errata, sample chap-
ters, and more. This Web site is available at http.//www.microsoft.com/learning/books/online
/developer and it will be updated periodically.

Support for This Book

Every effort has been made to ensure the accuracy of this book and companion content.
Microsoft Press provides corrections for books through the Web at the following address:

http.//www.microsoft.com/mspress/support/search.aspx

To connect directly to Microsoft Help and Support to enter a query regarding a question or
issue you may have, go to the following address:

http.//support.microsoft.com

If you have comments, questions, or ideas regarding the book or companion content or if
you have questions that are not answered by querying the Knowledge Base, please send
them to Microsoft Press using either of the following methods:

E-mail:
mspinput@microsoft.com
Postal mail:

Microsoft Press

Attn: Solid Code editor
One Microsoft Way
Redmond, WA 98052-6399

Please note that product support is not offered through the preceding mail addresses. For
support information, please visit the Microsoft Product Support Web site at

http.//support.microsoft.com

Table of Contents

1 Code QualityinanAgileWorld
Traditional Methods of Software Development.......................
Agile Methods of Software Development............................

eXtreme Programmingooiiiiiiiiiin i
Test-Driven Development. oo o vnaiensmssssssnesssness
Moving Quality Upstream
Inside Microsoft: Windows Live Hotmail Engineering..................
Engineering Principles.
Key, SUccess FaCtOrs« « vv v vt v s wvamn oismin wsiss e s s
Tactics for Writing Solid COAe .. ¢ vuv s vwissemnminisssmisaiasaensamse
Focuson Design.ottt
Defendand Debug ...t
Analyzeand Test
Improve Processes and Attitudes
SUIMIATY 555505 515 556 5555 5% 0 @ & i 3 605 198 508035515 7618 ek 5 58597 1 90 85 4 4 o s om0 P
Key POINts

2 Class Design and Prototyping...............cccivvunn....
Collaboration in Visual Studio i,
Think First, Code Later.ttt e e,

What do you think of this book? We want to hear from you!

Microsoft is interested in hearing your feedback so we can continually improve our books and learning
resources for you. To participate in a brief online survey, please visit:

microsoft.com/learning/booksurvey

Table of Contents

Software Modelingt 23
Unified Modeling Languageeeussmssenesmsnenssssnisesniess 24
Prototyping.o 37

U [LA 1 S ST S o R PRI S 47

KEY, POINES: - 5 515 5 5 5 i 05755 e 39 51500 5 0 0508 90 50 0 80 o 67916 65608 0 65, o 6 47

3 Metaprogramming.c.coeuieniiuninnennenennennennn 49

What Is Metadata?. 49

Metadata in Managed Applications oo i 51
Application Configuration Files............. ..., 52

Metadata in Your Applications i i 65

Inside Microsoft: Configuration Management in Windows Live Spaces. 66

SUMIMAIY .ottt e e e e e e e e e e e 69

KN POINES & ¢ o o003 50 e 615 0 #3005 15 50§ g 506 90 8 0 0t 0 6 6 55 o 50 085 08 B 61 69

4 PerformancelsaFeature................ 71

Common Performance Challenges............ 72
Network Latency e 72
Payload Size and Network Round Trips. ..., 74
Limited TCP Connectionst 75
Poorly'Optimized COEe .. a.vwswimivmesvmesmessnsamsss s susaoias 76

Analyzing Application Performance. ..., 78
Analyzing the Performance of Live Search 79

Tactics for Improving Web Application Performance 81
Reduce Payload Sizeottt 82
Cache EffectiVely. .« . vovweisomsomesemsomssssvsms sws s smessemis s 83
Optimize Network Traffic........ ... i i i i 84
Organize and Write Code for Better Performance 89

Incorporating Performance Best Practices.oooo... 90
Establish a Performance Excellence Program....................... 90

Inside Microsoft: Tackling Live Search Performance 92
Web Performance Principles oo i i i 92
Ky SUCEESS FACTOTS « . v s s v st s s s missis o6 mesimsim i s i o8 005 505 5 405 o 93

SUMINBEY v e 5150 6 e 1 6 505 081 8 5 & o 8554 5 51 € 5 05 (545 5 5 46 5153 550 51 1 6161 F 8 i 0 o 94

KEYPOINES . v v i s s m o e st s ot an s o s ki o b i o 10 95

5 DesigningforScale.......c.oociiussessscsrssansonsnesnna 97

Understanding Application Scalability................o L 98

Approaches to Scalability : ... s winassiarnsasmisisesmsunsgs s ing 99

Table of Contents

Database Scalability: . . cciaiimoisimmnntoraeasnnenennenennees 102
Tactics for Scaling Web Applications 104
Inside Microsoft: Managing the Windows Live Messenger Service
Infrastructure 115

Engineering PRNCIPIES. . - o se e vsimesememisensssmmonssssssmsssnss 115
SURMITYAIY 555 5 6.0 6 610 o ninse s mmen o oo o o o o minie o) om0 s o e o ot 118
Key POINts ... 118

6 Security Design and Implementation 121
Common Application Security Threats. 121
Principles for Designing Secure Applications 123

SecUrity DeSIGN PrINCIDIES: «ixmum x s onnim s o sias s o nsm i s - s s s 5055 124
SD3+C Strategy and Practices for Secure Applications................... 125

Secure by Designottt 126

Secureby Default.......... ... 130

Secure in Deployment and Communication....................... 131
Understanding .NET Framework Security Principles 133
Additional Security Best Practices. 139
SUNTIIATY & 515021050055 158 5 2155 5% 505505570 51 & 8 o 5 615 16 o 46 o6 o 0 RS 578 15 141
KEY POIMES « . o viieee e e onenniaie e ree e eees oo e sninnnnn s e 141

7 Managed MemoryModel.................. 143
Managed Heap. 144
G107 To [@ e | [= T 1o 145

Managed Wrappers for Native Objects........................... 146

Gl LSS et 147

Large Object Heap.oooii 148
Finalization 151

Non-Deterministic Garbage Collection........................... 151

Disposable Objects i 154

DASPOSE PATYEIM . o 5050 0« 1615 50 2 155 305 50805 661615 500 041 #1000 i o o s 1o 155

Weak Referencest 158
PRG35 5 e 55 6 5 8 5 £ 5 B o 0 £ 160
Tips forthe Managed Heap 162
CLR Profiler ... 163

CLR Profiler Walkthrough. . . v oueas s imasesmenssmsss oo amns 164
SUMIMATY .« .t e e e e 168

Table of Contents

8 Defensive Programming, 171
Defensive Programmingand C#., 172
VVOEINIENGIS 5 555 5505 5 55 151505 5 5 50705 2 6 & 0 B 51 e P 8 5 173
Code REVIBW . . o ot 174
SOTEWATE TESEING < 10 5155 55 515 550 05 R s 5 0395 51 05 0 4T 0 508 56 0 e 15 175

Test-Driven Development. 177
Code COVEIAgE. . . ittt ettt ettt e e e 180
Self-Documenting Code.cooviiiiiiiiiii e 181
Naming Conventions. 182
PSEUAO COTE: « :sswswvnisemvmanasasmesssaswasdsmgsossnismsanmnoses 183
COIMIMNEINES ..« v e ot i s o o 1 o) i 5 s A 185
Defensive Programming with Classes. oo, 188
Modifiers. 189
INEETFAEES. 5 ¢ st e 5 8 5 i 0 53 500500 55 6 o 5 0 6 189
Defensive Programming Without Examples 190
Defensive Programming with Examples 192
Design Patterns. 196
o R [A0 ol S s 10 A e] o s o 2 e SR 5 e e) D O R s SR 198
KEY: POTNES v 1o e s 19 5 55 5 0 i 0B 0805 52 605 8 5 06 5 B s 05 5 £ 3 0B 8 6 R 505 o o 199

9 Debugging........ .. e 201
Overflow Bugt 205
PERtIUM FDIV BUG s « 5 o 2 08 5 00 50 510050 8 8 3575755160 5 1 6 o 505 5 o 5, 31605 6 356 2 205
4] 0T o] S P P 205

Symbol Server. 208
SOUIEE SBIVEES 5« o555 565 5 55 55 54158 5 £ 5 8 b 1 0 1 5 v #cm o mt ot 0 30 i o 3 1m0 209
Preemptive Debugging. 210
Proactive Debugging.ooii i 212
Managed Debugging Assistants 213
MDA Example. 214
Code Analysis 215
Performance Monitoringooiiiiiiiiii .. 215
Debugging e 218
Debugging Toolst 220
Visual Studio. 220
INET FrameWork TOOIS: . : s.cn o5 cosnss o565 0855 565 080 0msimsnionns 222
Debugging Tools for Windows, 223

CLR Profiler . . .o 224

