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A Guide to Monte Carlo Simulations in Statistical Physics

This book deals with all aspects of Monte Carlo simulation of complex
physical systems encountered in condensed-matter physics and statistical

mechanics as well as in related fields, for example polymer science and lattice
gauge theory.

After briefly recalling essential background in statistical mechanics and prob-
ability theory, the authors give a succinct overview of simple sampling meth-
-ods. The next several chapters develop the importance sampling method,
both for lattice models and for systems in continuum space. The concepts
behind the various simulation algorithms are explained in a comprehensive
fashion, as are the techniques for efficient evaluation of system configurations
generated by simulation (histogram extrapolation, multicanonical sampling,
thermodynamic integration and so forth). The fact that simulations deal with
small systems is emphasized, and the text incorporates various finite size
scaling concepts to show how a careful analysis of finite size effects can be
a useful tool for the analysis of simulation results. Other chapters also provide
introductions to quantum Monte Carlo methods, aspects of simulations of
growth phenomena and other systems far from equilibrium, and the Monte
Carlo renormalization group approach to critical phenomena. Throughout
the book there are many applications, examples, and exercises to help the
reader in a thorough study of this book; furthermore, many up-to-date refer-
ences to more specialized literature are also provided.

This book will be bought by graduate students who have to deal with com-
puter simulations in their research, as well as by postdoctoral researchers, in
both physics and physical chemistry. It can be used as a textbook for graduate
courses on computer simulations in physics and related disciplines.
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Preface

Historically physics was first known as ‘natural philosophy’ and research was
carried out by purely theoretical (or philosophical) investigation. True pro-
gress was obviously limited by the lack of real knowledge of whether or not a
given theory really applied to nature. Eventually experimental investigation
became an accepted form of research although it was always limited by the
physicist’s ability to prepare a sample for study or to devise techniques to
probe for the desired properties. With the advent of computers it became
possible to carry out simulations of models which were intractable using
‘classical’ theoretical techniques. In many cases computers have, for the
first time ‘in history, enabled physicists not only to invent new models for
various aspects of nature but also 1o solve those same models without sub-
stantial simplification. In recent years computer power has increased quite
dramatically, with access to computers becoming both easier and more com-
mon (e.g. with personal computers and workstations), and computer simula-
tion methods have also been steadily refined. As a result computer
simulations have become another way of doing physics research. They pro-
vide another perspective; in some cases simulations provide a theoretical basis
for understanding experimental results, and in other instances simulations
provide ‘experimental’ data with which theory may be compared. There are
numerous situations in which direct comparison between analytical theory
and experiment is inconclusive. For example, the: theory of phase transitions
in condensed matter must begin with the choice of a Hamiltonian, and it is
seldom clear to what extent a particular model -actually represents a real
material on which experiments are. done. Since analytical treatments also
usually require mathematical approximations whose accuracy is difficult to
assess or control; one does not know whether. discrepancies between theory
and experiment shauld be attributed to shertcomings of the model, the
approximations, or both. The goal of this text is to provide a basic under-
standing of the -methods and philosophy of computer simulations research
with an emphasis on problems in statistical thermodynamics as applied to
condensed matter physics or materials science. There exist many other simu-
lational problems in physics (e.g. simulating the spectral intensity reaching a
detector in a scattering experiment) which are more straightforward and
which will only occasionally be mentioned. We shall use many-specific exam-
ples and, in some cases, give explicit computer programs, but we wish to
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xii Preface

emphasize that these methods are applicable to a wide variety of systems
including those which are not treated here at all. As computer architecture
changes the methods presented here will in some cases require relatively
minor reprogramming and in other instances will require new algorithm
development in order to be truly efficient. We hope that this material will
prepare the reader for studying new and different problems using both
existing as well as new computers.

At this juncture we wish to emphasize that it is important that the simula-
tion algorithm and conditions be chosen with the physics problem at hand in
mind. The interpretation of the resultant output is critical to the success of
any simulational project, and we thus include substantial information about
various aspects of thermodynamics and statistical physics to help strengthen
this connection. We also wish to draw the reader’s attention to the rapid
development of scientific visualization and the important role that it can play
in producing understanding of the results of some simulations.

This book is intended to serve as an introduction to Monte Carlo methods
for graduate students, and advanced undergraduates, as well as more senior
researchers who are not yet experienced in computer simulations. The book
is divided up in such a way that it will be useful for courses which only wish
to deal with a restricted number of topics. Some of the later chapters may
simply be skipped without affecting the understanding of the chapters which
follow. Because of the immensity of the subject, as well as the existence of a
number of very good monographs and articles on advanced topics which have
become quite technical, we will limit our discussion in ¢ertain areas, e.g.
polymers, to an introductory. level. The examples which are given are in
FORTRAN, not because it is necessarily the best scientific computer lan-
guage, but because it is certainly the most widespread. Many existing Monte
Carlo programs and related subprograms are in FORTRAN and will be
available to the student from libraries, journals, etc. A number of sample
problems are suggested in the various chapters; these may be assigned by
course instructors or worked out by students on their own. Our experience in
assigning problems to students taking a graduate course in simulations at the
University of Georgia over a 15 year period suggests that for maximum
pedagogical benefit, students should be required to prepare cogent reports
after completing each assigned simulational problem. Students were required
to complete seven ‘projects’ in the course of the quarter for which they
needed to write and debug programs, take and analyze data, and prepare a
report. Each report should briefly describe the algorithm used, provide sam-
ple data-and data analysis, draw conclusions and add comments. (A sample
program/output should be included.) In this way, the students obtain prac-
tice in the summary and presentation of simulational results, a skill which will
prove to be valuable later in their careers. For convenience, the case studies
that are described have been simply ‘taken from the research of the authors of
this book — the reader should be aware that this is by no means meant as a
negative statement on the quality of the research of numerous other groups in
the field. Similarly, selected references are given to aid the reader in finding
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more detailed information, but because of length restrictions it is simply not
possible to provide a complete list of relevant literature. Many coworkers
have been involved in the work which is mentioned here, and it is a pleasure
to thank them for their fruitful collaboration. We have also benefited from the
stimulating comments of many of our colleagues and we wish to express our
thanks to them as well.
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1 Introduction

. WHATISAMONTECARLO SIMULATION?

In a Monte Carlo simulation we attempt to follow the ‘time dependence’ of a
model for which change, or growth, does not proceed in some rigorously
predefined fashion (e.g. according to Newton’s equations of motion) but
rather in a stochastic manner which depends on a sequence of random
numbers which is generated during the simulation. With a second, different
sequence of random numbers the simulation will not give identical results but
will yield values which agree with those obtained from the first sequence to
within some ‘statistical error’. A very large number of different problems fall
into this category: in percolation an empty lattice is gradually filled with
particles by placing a particle on the lattice randomly with each ‘tick of the
clock’. Lots of questions may then be asked about the resulting ‘clusters’
which are formed of neighboring occupied sites. Particular attention has been
paid to the determination of the ‘percolation threshold’, i.e. the critical con-
centration of occupied sites for which an ‘infinite percolating cluster’ first
appears. A percolating cluster is one which reaches from one boundary of a
(macroscopic) system to the opposite one. The properties of such objects are
of interest in the context of diverse physical problems such as conductivity of
random mixtures, flow through porous rocks, behavior of dilute magnets, etc.
Another example is diffusion limited aggregation (DL.A) where a particle
executes a random walk in space, taking one step at each time interval,
until it encounters a ‘seed’ mass and sticks to it. The growth of this mass
may then be studied as many random walkers are turned loose. The ‘fractal’
properties of the resulting object are of real interest, and while there is no
accepted analytical theory of DLA to date, computer simulation is the
method of choice. In fact, the phenomenon of DLA was first discovered
by Monte Carlo simulation!

Considering problems of statistical mechanics, we may be attempting to
sample a region of phase space in order to estimate certain properties of the
model, although we may not be moving in phase space along the same path
which an exact solution to the time dependence of the model would yield.
Remember that the task of equilibrium statistical mechanics is to calculate
thermal averages of (interacting) many-particle systems: Monte Carlo simu-
lations can do that, taking proper account of statistical fluctuations and their

1



2 1 Introduction

effects in such systems. Many of these models will be discussed in more detail
in later chapters so we shall not provide further details here. Since the
accuracy of a Monte Carlo estimate depends upon the thoroughness with
which phase space i1s probed, improvement may be obtained by simply run-
ning the calculation a little longer to increase the number of samples. Unlike
in the application of many analytic techniques (e.g. perturbation theory for
which the extension to higher order may be prohibitively difficult), the
improvement of the accuracy of Monte Carlo results is possible not just in
principle but aiso in practice!

1.2. WHATPROBLEMS CAN WESOLVEWITH IT?

The range of different physical phenomena which can be explored using
Monte Carlo methods is exceedingly broad. Models which either naturally
or through approximation can be discretized can be considered. The motion
of individual atoms may be examined directly; e.g. in a binary (AB) metallic
alloy where one is interested in interdiffusion or unmixing kinetics (if the
alloy was prepared in a thermodynamically unstable state) the random hop-
ping of atoms to neighboring sites can be modeled directly. This problem is
complicated because the jump rates of the different atoms depend on the
locally differing environment. Of course, in this description the quantum
mechanics of atoms with potential barriers in the eV range is not explicitly
considered, and the sole effect of phonons (lattice vibrations) is to provide a
‘heat bath” which provides the excitation energy for the jump events. Because
of a separation of time scales (the characteristic times between jumps are
orders of magnitude larger than atomic vibration periods) this approach
provides very good approximation. The same kind of arguments hold true
for growth phenomena involving macroscopic objects, such as DLA growth
of colloidal particles; since their masses are orders of magnitude larger than
atomic masses, the motion of colloidal particles in fluids is well described by
classical, random Brownian motion. These systems are hence well suited to
study by Monte Carlo simulations which use random numbers to realize
random walks. The motion of a fluid may be studied by considering ‘blocks’
of fluid as individual particles, but these blocks will be far larger than indi-
vidual molecules. As an example, we consider ‘micelle formation’ in lattice
models of microemulsions (water—oil-surfactant fluid mixtures) in which
each surfactant molecule may be modeled by two ‘dimers’ on the lattice
(two occupied nearest neighbor sites on the lattice). Different effective inter-
actions allow one dimer to mimic the hydrophilic group and the other dimer
the hydrophobic group of the surfactant molecule. This model then allows
the study of the size and shape of the aggregates of surfactant molecules (the
micelles) as well as the kinetic aspects of their formation. In reality, this
process is quite slow so that a deterministic molecular dynamics simulation
(i.e. numerical integration of Newton’s second law) is not feasible. This
example shows that part of the ‘art’ of simulation is the appropriate choice



