RALPH C. SMITH

Computational Science & Engineering



RALPH C. SMITH

North Carolina State University
Raleigh, North Carolina

Uncertainty Quantification

Theory, Implementation, and Applications

ST P I S : i 1y ,""-":“
RPN R

M S I v
1o E
Samiss

Siam
Society for Industrial and Applied Mathematics
Philadelphia



Copyright © 2014 by the Society for Industrial and Applied Mathematics
10987654321

All rights reserved. Printed in the United States of America. No part of this book may be
reproduced, stored, or transmitted in any manner without the written permission of the publisher.
For information, write to the Society for Industrial and Applied Mathematics, 3600 Market Street,
6th Floor, Philadelphia, PA 19104-2688 USA.

Trademarked names may be used in this book without the inclusion of a trademark symbol. These
names are used in an editorial context only; no infringement of trademark is intended.

MATLAB is a registered trademark of The MathWorks, Inc. For MATLAB product information, please
contact The MathWorks, Inc., 3 Apple Hill Drive, Natick, MA 01760-2098 USA, 508-647-7000,
Fax: 508-647-7001, info@mathworks.com, www.mathworks.com.

Figures 1.2, 2.1, and 2.4 reprinted courtesy of NOAA.

Figure 2.3 reprinted with permission from ECMWF.

Figures 2.6, 2.9, and 2.11 reprinted with permission from IPCC.

Figures 2.12 and 2.15 reprinted courtesy of Kansas Geological Survey. All rights reserved.
Figure 2.13 reprinted courtesy of USGS.

Figure 2.14 reprinted courtesy of Mike Norton.

Figure 2.16 reprinted courtesy of USNRC.

Figure 2.17 reprinted courtesy of the U.S. Department of Energy.

Figures 2.18 and 2.19 reprinted with kind permission from Springer Science and Business Media.
Figures 6.7 (a), 8.8, and 8.9 (b) reprinted with permission from SAGE.

This research was supported by the Air Force Office of Scientific Research (Dynamics and Control
Program), the Department of Energy Consortium for Advanced Simulation of Light Water Reactors
(CASL), and the National Science Foundation (Research Training Groups in the Mathematical
Sciences).

Library of Congress Cataloging-in-Publication Data

Smith, Ralph C., 1960- author.
Uncertainty quantification : theory, implementation, and applications / Ralph Smith, North
Carolina State University, Raleigh, North Carolina.
pages cm. - (Computational science and engineering series)

Includes bibliographical references and index.

ISBN 978-1-611973-21-1

1. Measurement uncertainty (Statistics) 2. Estimation theory. |. Title.

QA276.8.564 2013

519.5'44-dc23

2013034432

S.I.a-"L is a registered trademark.



Uncertainty Quantification



Computational Science & Engineering

The SIAM series on Computational Science and Engineering publishes research monographs, advanced
undergraduate- or graduate-level textbooks, and other volumes of interest to an interdisciplinary CS&E
community of computational mathematicians, computer scientists, scientists, and engineers. The series
includes both introductory volumes aimed at a broad audience of mathematically motivated readers
inferested in understanding methods and applications within computational science and engineering and
monographs reporting on the most recent developments in the field. The series also includes volumes
addressed to specific groups of professionals whose work relies extensively on computational science and
engineering.

SIAM created the CS&E series to support access to the rapid and far-ranging advances in computer
modeling and simulation of complex problems in science and engineering, to promote the interdisciplinary
culture required to meet these large-scale challenges, and to provide the means to the next generation of
computational scientists and engineers.

Editor-in-Chief
Donald Estep
Colorado State University

Editorial Board

Omar Ghattas Max D. Morris

University of Texas at Austin lowa State University

Max Gunzburger Alex Pothen

Florida State University Purdue University

Des Higham Padma Raghavan

University of Strathclyde Pennsylvania State University
Michael Holst Karen Willcox

University of California, San Diego Massachusetts Institute of Technology
David Keyes

Columbia University and KAUST

Series Volumes
Smith, Ralph C., Uncertainty Quantification: Theory, Implementation, and Applications
Dankowicz, Harry and Schilder, Frank, Recipes for Continuation

Mueller, Jennifer L. and Siltanen, Samuli, Linear and Nonlinear Inverse Problems with Practical
Applications

Shapira, Yair, Solving PDEs in C++: Numerical Methods in a Unified Object-Oriented Approach,
Second Edition

Borzi, Alfio and Schulz, Volker, Computational Optimization of Systems Governed by Partial
Differential Equations

Ascher, Uri M. and Greif, Chen, A First Course in Numerical Methods

Layton, William, Introduction to the Numerical Analysis of Incompressible Viscous Flows
Ascher, Uri M., Numerical Methods for Evolutionary Differential Equations

Zohdi, T. ., An Introduction to Modeling and Simulation of Particulate Flows

Biegler, Lorenz T., Ghattas, Omar, Heinkenschloss, Matthias, Keyes, David, and van Bloemen
Waanders, Bart, Editors, Real-Time PDE-Constrained Optimization

Chen, Zhangxin, Huan, Guanren, and Ma, Yuanle, Computational Methods for Multiphase Flows
in Porous Media

Shapira, Yair, Solving PDEs in C++: Numerical Methods in a Unified Object-Oriented Approach



Preface

Uncertainty quantification is both a new field and one that is as old as the
disciplines of probability and statistics. The present novelty lies in the synthesis
of probability, statistics, model development, mathematical and numerical analysis,
large-scale simulations, experiments, and disciplinary sciences to provide a compu-
tational framework for quantifying input and response uncertainties in a manner
that facilitates predictions with quantified and reduced uncertainty. This is the
topic of this book.

Uncertainty quantification for physical models can be motivated in the context
of weather modeling. Models for complex phenomena, such as dust-induced cloud
formation, are approximate and uncertain, as are the parameters in these models.
Additional errors and uncertainties are introduced by the numerical algorithms and
experimental data used to approximate and calibrate the models. In the first step
of the prediction process, data assimilation or model calibration techniques are used
to determine input parameters and initial conditions so that quantities of interest,
such as temperature or relative humidity, match current conditions. The second step
entails the prediction of future weather conditions with uncertainties quantified by
probabilistic statements—e.g., 95% change of rain—or uncertainty cones of the type
reported for hurricanes or tropical storms.

Whereas model calibration and uncertainty propagation comprise the primary
aspects of the prediction process, their implementation for large-scale applications
requires a wide range of supporting topics. These include aspects of probability,
statistics, analysis, and numerical analysis as well as the following topics: param-
eter selection, surrogate model construction, local and global sensitivity analysis,
and quantification of model discrepancies. The interdisciplinary nature of the field
is augmented by the fact that all of these components must be investigated and
implemented in the context of the underlying applications.

The explosive growth of uncertainty quantification as an interdisciplinary field
is due to a number of factors: increasing emphasis on models having quantified
uncertainties for large-scale applications, novel algorithm development, and new
computational architectures that facilitate implementation of these algorithms.

In Chapter 2, we detail five applications where model predictions with quanti-
fied uncertainties are critical for understanding and predicting scientific phenomena
and making informed decisions and designs based on these predictions. These ap-
plications are weather models, climate models, subsurface hydrology and geology
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models, nuclear reactor models, and models for biological phenomena. Whereas the
presence and role of uncertainties in these applications has long been recognized,
the development of computational models that quantify and incorporate uncertain-
ties is receiving increased attention. The reliance of scientists and policy makers on
such models is expected to grow rapidly as the field of uncertainty quantification
for predictive sciences matures and computational resources evolve.

The relatively recent development of supporting mathematical and statistical
theory and algorithms is a second factor supporting the growth of the field. For
example, the adaptive DRAM and DREAM algorithms discussed in Chapter 8 for
Bayesian model calibration were developed within the last ten years. These algo-
rithms are presently being investigated in the context of climate and groundwater
models. Similarly, much of the sparse grid theory discussed in Chapter 11 was
developed in the last twenty years, although the original concept is much older.

The availability of massively parallel computer architectures and hardware
has further bolstered uncertainty quantification for complex and large-scale appli-
cations. The DREAM algorithms are inherently parallel, and recent versions of
DRAM are being implemented on parallel architectures. It is anticipated that field
programmable gate arrays (FPGAs) will be increasingly utilized for uncertainty
quantification as high-level tools are developed to reduce programming overhead.
The fact that we operate in increasingly data-rich environments will also benefit
uncertainty quantification, and we anticipate increased interaction between data
mining, high-dimensional visualization, and uncertainty quantification.

The growth in the field has spawned the introduction of interdisciplinary
courses on uncertainty quantification, and this text owes its genesis to the author’s
development of such a course at North Carolina State University in 2008. This text
was written with the goal of introducing advanced undergraduates, graduate stu-
dents, postdocs, and researchers in mathematics, statistics, engineering, and natural
and biological sciences to the various topics comprising uncertainty quantification
for predictive models. To achieve this, we motivate a number of the topics using
very basic examples that should be familiar to most readers. We have included
numerous definitions and significant detail to provide a common footing for a wide
range of readers. Because this is a new and evolving field, we indicate open research
questions at various points in the text and provide research references in the Notes
and References at the end of each chapter.

Various resources will be maintained at the website http://www.siam.org/
books/cs12 to augment the text and provide a mechanism to update the material.
This includes data employed in exercises as well as a future erratum.

This text has benefited significantly from graduate students, postdocs, and
colleagues whose comments have improved the exposition and reduced the number
of typos by orders of magnitude. Specifically, sincere thanks are extended to Nate
Burch, Amanda Coons, John Crews, John Harlim, Zhengzheng Hu, Zack Kenz,
Christine Latten, Jerry McMahan Jr., Keri Rehm, Mami Wentworth, and Lucus
Van Blaircum for their attention to detail and candid feedback regarding parts
of the manuscript. The author is also extremely grateful to Brian Adams and
Karen Willcox for their feedback during the review process; the book is significantly
improved due to their detailed comments.
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for related research and the writing of this text. These agencies include the Air Force
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Notation

This compilation does not include all of the symbols used throughout the text,
and we neglect those that appear one time in a specific context such as those in the
models of Chapter 2. Instead, it is meant to clarify the role of symbols that appear
multiple times throughout the discussion.

Symbol Meaning Page
oD, o) Boundaries of regions D and 2 62, 63
a(q*|lg* ) Probability of accepting candidate ¢* 159
Vi Normalization factor for (,-), 209
r;,r Range of i*"* random parameter, random vector 108
0,0(x;),0(t;) Model discrepancy or error 133, 257
€,€ Random and realized measurement errors 82, 132
Anr, Lebesgue constant 252
7 Mean 70
iy 1 Morris sensitivity measures 332
v Dimension of model response y(t, q) 61
mo(q), 7(qly) Bayesian prior and posterior density 100
m(y|q) Bayesian likelihood function 100
P (i), po(q) Density for i** random parameter, random vector 108
ol Unknown measurement error variance 135
a2,0% Estimator and estimate for o8 135
0 Singular values of the matrix A 117
2 Matrix of singular values of matrix A 117
v Realized measurements of T 132, 156
T Random variable for measurements 82
oi(x) Spatial basis functions 219
X Independent variables x = [z,t] € D x T = 63
Yu(Q), Yi(Q) Univariate, multivariate orthogonal polynomials 209, 213
Alq,p) Sparse grid quadrature operator 247
B(u,q), B(q)u Boundary operators 62, 63
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Xiv Notation
Symbol Meaning Page
C Observation matrix or vector 61
di(q),d?(q) Morris elementary effects for i** input 331
Dy By, Dy Total and partial variances of response Y 324
D Spatial domain in R!, R?, or R3 62
fl@), fit,z,q) Model response 132
f(q), f(t, x,q) Surrogate model 274
F(q) Source terms 62
H, H;,, Hp Hilbert spaces for state, parameters, and source 63
H;(Q) Hermite polynomials 210
H(q,p) Sparse quadrature grid 248
i,j’ K Multi-indices 212
I®f Integral operator in RP 240
1(¢) Multi-index sets 246
I}p Ju Interpolation operator in R? 254
1(q) Identifiable subspace 113
Z(q) Space of influential parameters 114
J(q) Least squares functional 135
J(g*|¢" 1) Proposal or jumping distribution 159
£(q|v) Log-likelihood function 83
L(q|v) Likelihood function 83
L(q)u Linear operator 63
L (q) Lagrange interpolating polynomial 251
L{;i Ty, LIQ,(F) Square integrable functions on I';, T’ 215
M, M, Number of collocation points or samples 253
n Number of measurements or model evaluations 61
N Dimension of state u 61
Nli(q) Unidentifiable subspace 113
NZ(q) Space of noninfluential parameters 114
N(A) Null space of the matrix A 116
N(u,q) Linear or nonlinear differential operator 62
P Number of parameters 100
P(Q) Legendre polynomials 211
Py Space of polynomials with argument less

than or equal to k 208
]?’k Polynomials in Px that are orthogonal to Py_; 208




Notation XV
Symbol Meaning Page
Qo True but unknown parameter 82
q=1la1,---,q) Realizations of @ 100
q* Proposed Markov chain parameter 159
gkt Parameter at k — 1 step in Markov chain 159
q",q™ Quadrature, collocation, and sample points 211, 217
Gors,Qors Least squares estimator, estimate for gg 82
Qrap Maximum a posteriori estimate 157
QriLe Maximum likelihood estimate 84
Q=[Qi,-.. ,Qp] Random vector of parameters 100
Q Orthogonal matrix in QR factorization 118
Q Admissible parameter space 82
Q Sample space 82
Q) Quadrature operator in RP 240
r Rank of matrix A 117
R, Ry Number of quadrature points 243
R Upper triangular matrix in QR factorization 118
ﬁ, R Residual estimator and estimate 136
R Number of sparse grid quadrature points 248
R(u,q) General observation or response 63
R(A) Range of the matrix A 116
S; Local sensitivity indices 192, 322
S7 Sigma-normalized sensitivity indices 322
Si, Sij, ST, Sobol sensitivity indices 324
88, Sum of squares error 156
T Temporal domain 63
u(q),u(t,z,q) State variable 61
u(q),u(t,z,q) Surrogate state representation 279
v, vY/ Spaces of spatial test functions 219
Vi Chain covariance matrix 172
w” Quadrature weights 211
X Deterministic n X p design matrix 131
X(q) Sensitivity matrix 144
y Realizations of Y 132
Y Random variable for model response 321
Z, 2% Spaces of parameter test functions 219







Acronyms and Initialisms

Term Meaning Page
ANOVA Analysis of variance 291
AR Autoregressive (model) 89
ASAP Adjoint sensitivity analysis procedure 306
BWR Boiling water reactor 36
cadlag Continue a droite, limite a gauche 69
CASL Consortium for Advanced Simulation of Light 37
Water Reactors
cdf Cumulative distribution function 68
CESM Community Earth System Model 30
CFCs chlorofluorocarbons 25
CRUD Chalk River unidentified deposit 43
CVTs Centroidal Voronoi tesselations 285
DAKOTA Design Analysis Kit for Optimization and 236
Terascale Applications
DOE Department of Energy 37
DRAM Delayed rejection adaptive Metropolis 172
DREAM DiffeRential Evolution Adaptive Metropolis 181
ECMWF European Centre for Medium-Range Weather Forecasts 16
FPGAs Field programmable gate arrays X
FSAP Forward sensitivity analysis procedure 306
ged Greatest common divisor 94
GCR Gas-cooled reactor 36
GP Gaussian process 89
gPC Generalized polynomial chaos 207
HDMR High-dimensional model representation 289
HIV Human immunodeficiency virus 45
iid Independent and identically distributed 79
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xviii Acronyms and Initialisms

Term Meaning Page
IPCC Intergovernmental Panel on Climate Change 32
kde Kernel density estimation 75
LANL Los Alamos National Laboratory 41
LQR Linear quadratic regulator 50
MAP Maximum a posteriori (estimate) 157
MCMC Markov chain Monte Carlo 159
MLE Maximum likelihood estimate 84
NISP Nonintrusive spectral projection 225
NWP Numerical weather prediction 16
ODE Ordinary differential equation 51
OLS Ordinary least squares 82
ORNL Oak Ridge National Laboratory 41
PC Polynomial chaos 207
PCA Principal component analysis 109
PDE Partial differential equation 51
pdf Probability density function 69
POD Proper orthogonal decomposition 285
PRA Probabilistic risk assessment 44
PWR Pressurized water reactor 36
Q-Q Quantile-quantile 74
Qol Quantity of interest 4
SAMSI Statistical and Applied Mathematical Sciences Institute xi
SDE Stochastic differential equation 97
SIR Susceptible, infected, recovered (model) 55
SVD Singular value decomposition 117

WMO World Meteorological Organization 17
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