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Preface

The qualitative theory and stability theory of differential equations, created by
Poincaré and Lyapunov at the end of the 19th century had major developments
as two branches of the theory of dynamical systems during the 20th century.
As a part of the basic theory of nonlinear science, it is one of the very active
areas in the new millennium.

This book presents in an elementary way the recent significant develop-
ments in the qualitative theory of planar dynamical systems. The subjects
are covered as follows: the studies of center and isochronous center problems,
multiple Hopf bifurcations and local and global bifurcations of the equivariant
planar vector fields which concern with Hilbert’s 16th problem.

We are interested in the study of planar vector fields, because they oc-
cur very often in applications. Indeed, such equations appear in modelling
chemical reactions, population dynamics, traveling wave systems of nonlin-
ear evolution equations in mathematical physics and in many other areas of
applied mathematics and mechanics. In the other hand, the study of planar
vector fields has itself theoretical signification. We would like to cite Canada’s
mathematician Dana Schlomiuk’s words to explain this fact: “Planar polyno-
mial vector fields and more generally, algebraic differential equations over the
projective space are interesting objects of study for their own sake. Indeed,
due to their analytic, algebraic and geometric nature they form a fertile soil
for intertwining diverse methods, and success in finding solutions to problems
in this area depends very much on the capacity we have to blend the diverse
aspects into a unified whole.”

We emphasize that for the problems of the planar vector fields, many
sophisticated tools and theories have been built and still being developed,
whose field of application goes far beyond the initial areas. In this book,
we only state some important progress in the above directions which have
attracted our study interest.

In order to clearly understand the content in this book for young readers,
and to save space in the following chapters, we shall describe in more detail
the subjects which are written in this book and give brief survey of the historic
literature.

I. Center-focus problem

We consider planar vector fields and their associated differential equations:

dr dy
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where X(z,y),Y (z,y) are analytic functions or polynomials with real coeffi-
cients. If X, Y are polynomials, we call degree of a system (E), the num-
ber n = max(deg(X),deg(Y)). Without loss of generality, we assume that
X(0,0) =Y(0,0) =0, i.e., the origin O(0, 0) is a singular point of (E) and the
linearization at the origin of (E) has purely imaginary eigenvalues.

The origin O(0,0) is a center of (E) if there exists a neighborhood U of
the origin such that every point in U other than O(0,0) is nonsingular and

the orbit passing through the point is closed. In 1885, Poincaré posed the
following problem.

The problem of the center
Find necessary and sufficient conditions for a planar polynomial differential
system (E) of degree m to possess a center.

This problem is still unsolved for systems of degree greater than two.

Poincaré considered the above problem. He gives an infinite set of neces-
sary and sufficient conditions for such system to have a center at the origin.
In his memoir on the stability of motion, Lyapunov studies systems of differ-
ential equations in n variables. When applied to the case n = 2, his results
also give a infinite set of necessary and sufficient conditions for system (E)
with X,Y polynomials to have a center (actually, Lyapunov’s result is more
general since it is for the case where X and Y are analytic functions). In
searching for sufficient conditions for a center, both Poincaré and Lyapunov’s
work involve the idea of trying to find a constant of the motion F(z,y) for (E)
in a neighborhood U of the origin, where

F(ZL‘,y) = ZFk(ian); (1)
k=2

Fy is a homogeneous polynomial of order k and Fj is a positive definite
quadratic form. If F is constant on all solution curve (z(t),y(t)) in U, we
say that F is a first integral on U of system (E). If there exists such a F which
is nonconstant on any open subset of U, we say that system (E) is integrable
on U.

Poincaré and Lyapunov proved the following theorem.

Poincaré-Lyapunov Theorem The origin of the polynomial (or ana-
lytic) system (E) is a center if and only if in an open neighborhood U of the
origin, (E) has a nonconstant first integral which is analytic.

Thus, we can construct a power series (1) such that
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a =Vi(z"+y" )+ -+ V(e +y")" (2)

e

with Vi, Vs, -+ ,V;, -+ constants. The first non-zero V; give the asymptotic
stability or instability of the origin according to its negative or positive sign.
Indeed, stopping the series at Fj, we obtain a polynomial which is a Lyapunov
function for the system (E). The Vs are called the Lyapunov constants. Some
people also use the term focal values for them. In fact, Andronov et al defined

2

the focal values by the formula o; = a ;( 0 which is the ith derivative of the
function d(pg) = P(po) — po, where P is the Poincaré return map. The first
non-zero focal value of Andronov corresponding to an odd number ¢ = 2n 4 1.
It had been proved that the first non-zero Lyapunov constant V,, differs only
by a positive constant factor from the first non-zero focal value, which is
d7+1)(0). Hence, the identification in the terminology is natural.

In terms of the Vs, the conditions for a center of the origin become V;, = 0,
for all £k = 1,2,3,--- . Now V{,V5,--- ,Vg,--- are polynomial with rational
coefficients in the coefficients of X (z,y) and Y (z,y). Theoretically, by using

Hilbert’s basis theorem, the ideal generated by these polynomials has a finite

basis B, Ba, -+ ,Bm. Hence, we have a finite set of necessary and sufficient
conditions for a center, ie.,, B; = 0 for i = 1,2,--- ;M. To calculate this
basis, we reduce each Vi modulo <« Vi, Vs, -+, Vig_1 >, the ideal generated

by Vi,Vs, - ,Vi_1. The elements of the basis thus obtained are called the
Lyapunov quantities or the focal quantities. The origin is said to be a k-
order fine focus (or a focus of multiplicity k) of (E) if the fist £ — 1 Lyapunov
quantities are 0 but the k-order one is not.

The above statement tell us that the solution of the center-focus for a
particular system, the procedure is as follows: compute several Lyapunov
constants and when we get one significant constant that is zero, try to prove
that the system obtained indeed has a center. Unfortunately, the described
method has the following questions.

(1) How can we be sure that you have computed enough Lyapunov con-
stants?

(2) How do we prove that some system candidate to have a center actually
has a center?

(3) Do you know the general construction of Lyapunov constants in order
to get general shortened expressions for Lyapunov constants Vi, V2, .

In Chapter 1 and Chapter 2 we devote to give possible answer for these
questions.

In addition, we shall consider the following two problems.



iv Preface

Problem of center-focus at infinite singular point

A real planar polynomial vector field V' can be compactified on the sphere
as follows: Consider the z,y plane as being the plane Z = 1 in the space R3
with coordinates X,Y,Z. The center projection of the vector field V on the
sphere of radius one yields a diffeomorphic vector field on the upper hemisphere
and also another vector field on the lower hemisphere. There exists an analytic
vector filed p(V) on the whole sphere such that its restriction on the upper
hemisphere has the same phase curves as the one constructed above from the
polynomial vector field. The projection of the closed northern hemisphere H*
of S2on Z = 0 under (X,Y, Z) — (X,Y) is called the Poincaré disc. A singu-
lar point g of p(V) is called a infinite (or finite) singular point if ¢ € S! (or ¢ €
S? 8'). The vector field p(V) restricted to the upper hemisphere completed
with the equator is called Poincaré compactification of a polynomial vector
field.

For a infinite singular point, there exists the problem of the characteriza-
tion of center for concrete families of planar polynomial (or analytic) systems.
In chapter 2, we shall introduce our some research results.

Problem of center-focus at a high-order singular point
" The center-focus problem for a degenerate singular point is essentially dif-
ficult problems. There is only a few results on this direction before 2000 year.
This book shall give some basic results in Chapter 2.

II. Small-amplitude limit cycles created by multiple Hopf bifur-
cations

So called Hopf bifurcation, it means that a differential system exhibits the
phenomenon that the appearance of periodic solution ( or limit cycle in plane)
branching off from an equilibrium point of the system when certain changes of
the parameters occur. Hopf’s original work on this subject appeared in 1942,
in which the author considered higher dimensional (greater than two) systems.
Before 1940s, Andronov and his co-workers had done the pioneering work for
planar dynamical systems. Bautin showed that for planar quadratic systems
at most three small-amplitude limit cycles can bifurcate out of one equilibrium
point. By the work of Andronov et al, it is well known that the bifurcation of
several limit cycles from a fine focus is directly related with the stability of the
focus. The sign of the first nonvanishing Lyapunov constant determines the
stability of the focus. Furthermore, the number of the leading V/s(i = 1,2,---)
which vanish simultaneously is the number of limit cycles which may bifurcate
from the focus. This is the reason why the investigation of the bifurcation of
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limit cycles deal with the computation of Lyaponov constants.

The appearance of more than one limit cycles from one equilibrium point
is called multiple Hopf bifurcation. How these small-amplitude limit cycles can
be generated? The idea is to start with a system (E) for which the origin is a
kth fine focus, then to make a sequence of perturbations of the coeflicients of
X(z,y) and Y(z,y) each of which reverses the stability of the origin, thereby
causing a limit cycle to bifurcate.

In Chapter 3 and Chapter 4 the readers shall see a lot of examples of
systems having multiple Hopf bifurcation.

ITI. Local and non-local bifurcations of Z,-equivariant perturbed
planar Hamiltonian vector fields

The second part of Hilbert’s 16th problem deals with the maximum number
H(n) and relative positions of limit cycles of a polynomial system

dz dy
ZE - Pn(.’E,y), a - Qn(x,y) (En)

of degree n, i.e., max(deg P,deg Q) = n. Hilbert conjectured that the number
of limit cycles of (E,) is bounded by a number depending only on the degree
n of the vector fields.

n
Let x, be the space of planar vector fields X = (Pn = Z al-j:z:iyj , Q=
i+5=0

n
Z bij:ciyj) with the coefficients (a;j,b;;) € B C RN for0<i+j<n,N=
1+3=0
(nj+ 1)(n + 2). The standard procedure in the study of polynomial vector
fields is to consider their behavior at infinity by extension to the Poincaré
sphere. Thus, we can see (E,) as an analytic N-parameter family of differential
equations on S? with the compact base B. Then, the second part of Hilbert’s
16th problem may be splited into three parts:
Problem A Prove the finiteness of the number of limit cycles for any
concrete system X € ¥, (given a particular choice for coefficients of (E;)) i.e,

#H{L.C. of (En)} < .

Problem B Prove for every n the existence of a uniformly bounded
upper bound for the number of limit cycles on the set B as the function of the
parameters, i.e.,

vn, V (ai,bi;) € B,3H(n) such that H{L.C. of (E,)} < H(n)

and find an upper estimate for H(n).
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Problem C For every n and known K = H(n), find all possible configu-
rations (or schemes) of limit cycles for every number K, K—i,i =1,2,---, K-
1 respectively.

Hence, the second part of Hilbert’s 16th problem consists of problem
A~problem C.

The problem A for polynomial and analytic differential equations are al-
ready solved by Ecalle (1992) and Ilyashenko (1991) independently. Of course,
as S. Small stated that “These two papers have yet to be thoroughly digested
by mathematical community”.

Up to now, there is no approach to the solution of the problem B, even for
n = 2, which seem to be very complicated. But there exists a similar problem,
which seems to be a little bit easier. It is the weakened Hilbert’s 16th problem
proposed by Arnold (1977):

“Let H be a real polynomial of degree n and let P be a real polynomial
of degree m in the variables (z,y). How many real zeroes can the function

I(h)z// Pdzdy
H<h
have 7 7

The question is why zeroes of the Abelian integrals I (h) is concerned with
the second part of Hilbert’s 16th problem ?

Let H(z,y) be a real polynomial of degree n, and let P(z,y) and Q(z,y)
be real polynomials of degree m. We consider a perturbed Hamiltonian systein
in the form

dr OH dy  OH
ar o4 ey _ 94 E
%= By +eP(z,y,A), — 5 TR, A), (Ex)

in which we assume that 0 < € < 1 and the level curves
H(z,y)=h

of the Hamiltonian system (Eg)e—o contain at least a family I'y of closed orbits
for h € (h1, h2).
Consider the Abelian integrals

I(h) = /F (Pl )y ~ Qo)) = / /H . (aP é‘;’y) + aQ("”’”) dedy.

Ay

Poincaré-Pontrjagin-Andronov Theorem on the global center bi-
furcation
The following statements hold.
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(i) If I(h*) = 0 and I’(h*) # 0, then there exists a hyperbolic limit cycle
Ly« of system (6.1) such that Ly« — 'p« as € — 0; and conversely, if there
exists a hyperbolic limit cycle Lp+ of system (Eg) such that L+ — Tp+ as
g — 0, then I(h*) = 0, where h* € (hy, ha).

(i) If I(h*) = I'(h*) = I"(h*) = --- = I®=1(h*) = 0, and I®)(h*) £ 0,
then (Ey) has at most k limit cycles for € sufficiently small in the vicinity of
I_-\h* -

(iii) The total number of isolated zeroes of the Abelian integral (taking into
account their multiplicity) is an upper bound for the number of limit cycles

of system (Eg) that bifurcate from the periodic orbits of a period annulus of
Hamiltonian system (Eg)e=o.

This theorem tells us that the weakened Hilbert’s 16th problem posed by
Arnold (1977) is closely related to the problem of determining an upper bound
N(n,m) = N(n,m, H, P,Q) for the number of limit cycles in a period annulus
for the Hamiltonian system of degree n — 1 under the perturbations of degree
m, i.e., of determining the cyclicity on a period annulus. Since the problem
is concerned with the number of limit cycles that occur in systems which are
close to integrable ones (only a class of subsystems of all polynomial systems).
So that it is called the weakened Hilbert’s 16th problem.

A closed orbit I'y« satisfying the above theorem (i) is called a generating
cycle.

To obtain Poincaré-Pontrjagin-Andronov Theorem, the problem for inves-
tigating the bifurcated limit cycles is based on the Poincaré return mapping.
It is reduced to counting the number of zeroes of the displacement function

d(h,e) = eMy(h) + 2 Ma(h) + -+ + * Mi(h) + -+ -,

where d(h,¢) is defined on a section to the flow, which is parameterized by
the Hamiltonian value h. I(h) just is equal to M;(h). The function Mg(h) is
called k order Melnikov function. If I(h) = M;(h) = 0, we need to estimate
the number of zeroes of higher order Melnikov functions. The zeroes of the
first nonvanishing Melnikov function Mj(h)} determine the limit cycles in (Eg)
emerging from periodic orbits of the Hamiltonian system (Eg)c.

In Chapter 5 we discuss a class of particular polynomial vector fields—
Z4-equivariant perturbed planar Hamiltonian vector fields, by using Poincaré-
Pontrjagin-Andronov Theorem and Melnikov’s result. The aim is to get some
information for the second part of Hilbert’s 16th problem.
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IV. Isochronous center problem and periodic map

Suppose that system (E) has a center in the origin (0,0). Then, there is a
family of periodic orbits of (E) enclosing the origin. The largest neighborhood
of the center entirely covered by periodic orbits is called a period annulus
of the center. If the period of the orbits is constant for all periodic orbits
lying in the period annulus of the origin, then the center (0,0) is called an
isochronous center. It has been proved that the isochronous center can exist
if the period annulus of the center is unbounded.

If the origin is not an isochronous center, for a point (£,0) in a small
neighborhood of the origin (0,0), we define P(£) to be the minimum period
of the periodic orbit passing through (£,0). The study for the period function
¢ — P(&) is also very interesting problem, since monotonicity of the period
function is a non-degeneracy condition for the bifurcation of subharmonic so-
lutions of periodically forced integrable systems.

The history of the work on period functions goes back at least to 1673 when
C. Huygens observed that the pendulum clock has a monotone period function
and therefore oscillates with a sharter period when the energy is decreased,
i.e., as the clock spring unwinds. He hope to design a clock with isochronous
oscillations in order to have a more accurate clock to be used in the navigation
of ships. His solution, the cycloidal pendulum, is perhaps the first example of
nonlinear isochronous center.

In the last three decades of the 20th century, a considerable number of pa-
pers of the study for isochronous centers and period maps has been published.
But, for a given polynomial vector field of the degree is more than two, the
characterization of isochronous center is still a very difficult, challenging and
unsolved problem.

In Chapter 6 we introduce some new method to treat these problems.

In Chapter 7 we consider a class of nonanalytic systems which is called
“quasi-analytic systems”. We will completely solve its center and isochronous
center problems as well as the bifurcation of limit cycles.

Finally, in Chapter 8, as an example, for a class of Zz-symmetric cubic
systems, we give the complete answer for the center problem.

We would like to cite the following words written by Anna Schlomiuk in
2004 as the finale of this preface: “Planar polynomial vector fields are dynam-
ical systems but to perceive them uniquely from this angle is limiting, missing
part of their essence and hampering development of their theory. Indeed, as
dynamical systems they are very special systems and the prevalent generic
viewpoint pushes them on the side. This may explain in part why Hilbert’s
16th problem as well as other problems are still unsolved even in their simple
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case, the quadratic one. But, Poincaré’s work shows that he regarded these
systems as interesting object of study from several viewpoints, and his appre-
ciation of the work of Darboux which he qualifies as “admirable” emphasizes
this point. This area is rich with problems, very hard, it is true, but exactly
for this reason an open mind and a free flow of ideas is necessary. It is to
be hoped that in the future there will be a better understanding of this area
which lies at a crossroads of dynamical systems, algebra, geometry and where

algebraic and geometric problems go hand in hand with those of dynamical
systems.”

The book is intended for graduate students, post-doctors and researchers
in dynamical systems. For all engineers who are interested the theory of
dynamical systems, it is also a reasonable reference. It requires a minimum
background of a one-year course on nonlinear differential equations.

The publication of this book is supported by the research foundation of the
Center for Dynamical Systems and Nonlinear Science Studies given by Zhe-
jiang Normal University. The work described in this book is supported by the
grants from the National Natural Science Foundation of China (No.10231020
and No.10771196) and the National Natural Science Foundation of Yunnan
Province and Science Foundation of Guilin University of Electronic Technol-
ogy, partly.

Finally, we would like to acknowledge all members of the Center for Dy-
namical Systems and Nonlinear Studies of Zhejiang Normal University for their
encouragement and help. We thank editors of the Science Press of Chinese
Academy of Science for their help in the publication of this book.

Li Jibin
Spring, 2007
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Chapter 1

Focal Values, Saddle Values and Singular
Point Values

In this chapter, we consider a class of real planar autonomous differential sys-
tems, for which the functions of the right hand are analytic in a neighborhood
of the origin and the origin is a focus or a center. We shall introduce the
elementary theory to solve the center problem.

1.1 Successor Functions and Properties of Focal Values

By making a linear change of the space coordinates and a rescaling of the time
variable if necessary, a planar differential system can be written as

dx =

Pl > Xi(z,y) = X(z,y),
k=2

d o0

Tz +dy+Y Yil@,y) = Y(z,), (1.1.1)
k=2

where X (z,y), Y(z,y) are analytic in a sufficiently small neighborhood of the
origin, and

Xk($7 y) = Z Aaﬂmayﬂa
a+3=k

Ye(z,p)= 3 Bagz®y’. (1.1.2)
a+pB=k

It is well known that the origin of system (1.1.1) is a simple focus when
5 # 0 and it is either a weak focus or a center when § = 0. The problem of
determining whether a non-degenerate critical point (it has purely imaginary
eigenvalues) is a center or a weak focus is called the center-focus problem (or
simply, center problem). This is one of the most important topics in the qual-
itative theory of planar dynamical systems. Poincaré (1891~1897), Lyapunov



