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PREFACE TO THE
SECOND EDITION

As the first edition of this book has been well received through five printings
over a period of more than thirty years, we have decided to leave the mate-
rial of the first edition essentially unchanged — barring a few necessary up-
dates. On the other hand, it appeared worthwhile to extend the existing text
by adding a reasonably informative introduction to C*— and W *—algebras.
The theory of these algebras seems to be of increasing importance in math-
ematics and theoretical physics, while being intimately related to topological
vector spaces and their orderings—the prime concern of this text.

The authors wish to thank J. Schweizer for a careful reading of Chapter
VI, and the publisher for their care and assistance.

Tiibingen, Germany

H. H. Schaefer
Spring 1999 M. P.

Wolff



Preface

The present book is intended to be a systematic text on topological vector
spaces and presupposes familiarity with the elements of general topology and
linear algebra. The author has found it unnecessary to rederive these results,
since they are equally basic for many other areas of mathematics, and every
beginning graduate student is likely to have made their acquaintance. Simi-
larly, the elementary facts on Hilbert and Banach spaces are widely known
and are not discussed in detail in this book, which is mainly addressed to those
readers who have attained and wish to get beyond the introductory level.

The book has its origin in courses given by the author at Washington State
University, the University of Michigan, and the University of Tiibingen in
the years 1958-1963. At that time there existed no reasonably complete text on
topological vector spaces in English, and there seemed to be a genuine need
for a book on this subject. This situation changed in 1963 with the appearance
of the book by Kelley, Namioka et al. (1] which, through its many elegant
proofs, has had some influence on the final draft of this manuscript. Yet the
two books appear to be sufficiently different in spirit and subject matter to
justify the publication of this manuscript; in particular, the present book
includes a discussion of topological tensor products, nuclear spaces, ordered
topological vector spaces, and an appendix on positive operators. The author
is also glad to acknowledge the strong influence of Bourbaki, whose mono-
graph [7], [8] was (before the publication of Kéthe [5]) the only modern
treatment of topological vector spaces in printed form.

A few words should be said about the organization of the book. There is a
preliminary chapter called “Prerequisites,” which is a survey aimed at
clarifying the terminology to be used and at recalling basic definitions and
facts to the reader’s mind. Each of the five following chapters, as well as the
Appendix, is divided into sections. In each section, propositions are marked
u.v, where u is the section number, v the proposition number within the

vi



PREFACE vil

section. Propositions of special importance are additionally marked
“Theorem.” Cross references within the chapter are (u.v), outside the chapter
(r, u.v), where r (roman numera’) is the number of the chapter referred to.
Each chapter is preceded by an introduction and followed by exercises. These
“ Exercises "’ (a total of 142) are devoted to further results and supplements, in
particular, to examples and counter-examples. They are not meant to be
worked out one after the other, but every reader should take notice of them
because of their informative value. We have refrained from marking some of
them as difficult, because the difficulty of a given problem is a highly subjective
matter. However, hints have been given where it seemed appropriate, and
occasional references indicate literature that may be needed, or at
least helpful. The bibliography, far from being complete, contains
(with few exceptions) only those items that are referred to in the text.

I wish to thank A. Pietsch for reading the entire manuscript, and A. L.
Peressini and B. J. Walsh for reading parts of it. My special thanks are
extended to H. Lotz for a close examination of the entire manuscript, and for
many valuable discussions. Finally, I am indebted to H. Lotz and A. L.
Peressini for reading the proofs, and to the publisher for their care and

cooperation.
H. H.S.

Tiibingen, Germany
December, 1964
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PREREQUISITES

A formal prerequisite for an intelligent reading of this book is familiarity
with the most basic facts of set theory, general topology, and linear algebra.
The purpose of this preliminary section is not to establish these results but
to clarify terminology and notation, and to give the reader a survey of the
material that will be assumed as known in the sequel. In addition, some of
the literature is pointed out where adequate information and further refer-
ences can be found.

Throughout the book, statements intended to represent definitions are
distinguished by setting the term being defined in bold face characters.

A. SETS AND ORDER

1. Sets and Subsets. Let X, Y be sets. We use the standard notations x € X
for “x is an element of X, X< Y (or Y > X) for “ X is a subset of ¥,
X=7Yfor“Xc Yand Yo X”. If (p) is a proposition in terms of given
relations on X, the subset of all x € X for which (p) is true is denoted by
{x € X: (p)x} or, if no confusion is likely to occur, by {x: (p)x}. x ¢ X means
“x is not an element of X, The complement of X relative to Y is the set
{xe Y: x¢ X}, and denoted by Y ~ X. The empty set is denoted by & and
considered to be a finite set; the set (singleton) containing the single element
x is denoted by {x}. If (p,), (p,) are propositions in terms of given relations
on X, (p;) = (p,) means “(p,) implies (p,}”, and (py)<>(p,) means “(p,) is
equivalent with (p,) . The set of all subsets of X is denoted by P(X).

2. Mappings. A mapping f of X into Y is denoted by f X — Y or by
x = f(x). X is called the domair of £, the image of X under f, the range of f;
the graph of f is the subset G, = {(x,f(x)): x € X} of Xx Y. The mapping of
the set PB(X) of all subsets of X into P(Y) that is associated with £, is also
denoted by f; that is, for any A c X we write f{4) to denote the set

1



2 PREREQUISITES

{f(x): xe A} c Y. The associated map of P(Y) into P(X) is denoted by
S~ thus for any B< Y, f~'(B)={xe X:f(x) e B}. If B={b}, we write
S7(b) in place of the clumsier (but more precise) notation f~'({b}). If
S X-Y and g: Y- Z are maps, the composition map x— g(f{x)) is
denoted by g o f.

A mapf: X - Yis biunivocal (one-to-one, injective) if f(x,) = f(x,) implies
X; = X,; it is onto Y (surjective) if f(X) = Y. A map f which is both injective
and surjective is called bijective (or a bijection).

Iff: X—> Yisamapand 4 ¢ X, the map g: A — Y defined by g(x) = f(x)
whenever x € A is called the restriction of fto A and frequently denoted by f,.
Conversely, fis called an extension of g (to X with values in Y).

3. Families. If A is a non-empty set and X is a set, a mapping o — x()
of A into X'is also called a family in X; in practice, the term family is used for
mappings whose domain A enters only in terms of its set theoretic properties
(i.e., cardinality and possibly order). One writes, in this case, x, for x(«) and
denotes the family by {x,: « € A}, Thus every non-empty set X can be viewed
as the family (identity map) x — x(x € X); but it is important to notice that
if {x,: « € A} is a family in X, then « # f does not imply x,# x;. A sequence
is a family {x, neN}, N={l,2,3,..} denoting the set of natural numbers,
If confusion with singletons is unlikely and the domain (index set) A is clear
from the context, a family will sometimes be denoted by {x,} (in particular, a
sequence by {x,}). 4

4. Set Operations. Let {X,: « € A} be a family of sets. For the union of this
family, we use the notations {X,: a € A}, U X,, or briefly |, X, if the

index set A i ns clear from the context. If {X,: n eN} is a sequence of sets we
also write U X,, and if {X|, ..., X;} is a finite family of sets we write UX or
1

X; v X, U ... U X,. Similar notations are used for intersections and Car-
tesian products, with | replaced by ) and [] respectively. If {X,: a € A} is
a family such that X, = X for all a € A, the product [],X, is also denoted by
XA,

If R is an equivalence relation (i.e., a reflexive, symmetric, transitive binary
relation) on the set X, the set of equivalence classes (the quotient set) by R is
denoted by X/R. The map x — £ (also denoted by x — [x]) which orders to
cach x its equivalence class £ (or [x]), is called the canonical (or quotient) map
of X onto X/R.

5. Orderings. An ordering (order structure, order) on a set X is a binary
relation R, usually denoted by <, on X which is reflexive, transitive, and anti-
symmetric (x £ y and y < x imply x = y). The set X endowed with an order
< is called an ordered set. We write y = x to mean x £ y, and x < y to mean
x £ y but x # y (similarly for x > y). If R, and R, are orderings of X, we say
that R, is finer than R, (or that R, is ccarser than R,) if x(R,)y implies
x(R;)y. (Note that this defines an ordering on the set of all orderings
of X))



§A] SETS AND ORDER 3

Let (X, <) be an ordered set. A subset 4 -of X is msjorized if there exists
a, € X such that a < a, whenever a€ 4; a, is a majorant (upper bound) of 4.
Dually, 4 is minorized by a, if a, < @ whenever a € 4; then g, is a minorant
(lower bound) of 4. A subset 4 which is both majorized and minorized, is
called order bounded. If A is majorized and there exists a majorant a, such
that a, < b for any majorant b of 4, then a, is unique and called the supremum
(least upper bound) of A; the notation is ap = sup 4. In a dual fashion, one
difines the infimum (greatest lower bound) of 4, to be denoted by inf 4. For
each pair (x, y) € X x X, the supremum and infimum of the set {x, y} (when-
ever they exist) are denoted by sup(x, y) and inf(x, y) respectively. (X, =2)is
called a lattice if for each pair (x, y), sup(x, y) and inf(x, y) exist, and (X, <)is
called a complete lattice if sup 4 and inf 4 exist for every non-empty subset
A < X. (In general we avoid this latter terminology because of the possible
confusion with uniform completeness.) (X, <) is totally ordered if for each
pair (x, y), at least one of the relations x <y and y = x is true. An element
x € X is maximal if x < y implies.x = y.

Let (X, <) be a non-empty ordered set. X is called directed under <
(briefly, directed (<)) if every subset {x, y} (hence each finite subset) possesses
an upper bound. If x, € X, the subset {x € X : xo < x} is called a section of X
(more precisely, the section of X generated by x,). A family {y,:« €A} is
directed if A is a directed set; the sections of a directed family are the sub-
families {y,: ao < a}, for any a5 € A.

Finally, an ordered set X is inductively ordered if each totally ordered
subset possesses an upper bound. In each inductively ordered set, there exist
maximal elements (Zorn’s lemma). In most applications of Zorn’s lemma,
the set in question is a family of subsets of a set S, ordered by set theoretical
inclusion <.

6. Filters. Let X be a set. A set § of subsets of X is called a filter on X if
it satisfies the following axioms:

N F#-Jand ¢ 5.
2) FeFand Fc G < X implies Ge §.
() FeFand Ge § implies FNGe §.

A set B of subsets of X is a filter base if (1°) B # & and & ¢ B, and (2') if
B, €% and B, € B there exists B; € B such that By c B, n B,. Every filter
base B generates a unique filter § on X such that Fe § if and only .if
B < F for at least one BeB; B is called a base of the filter §. The set of all
filters on a non-empty set X is inductively ordered by the relation §, = &,
(set theoretic inclusion of P(X)); &, < & is expressed by saying that §, is
coarser than §,, or that &, is finer than §,. Every filter on X which is maximal
with respect to this ordering, is called an ultrafilter on X; by Zorn’s lemma,
for each filter § on X there exists an ultrafilter finer than &: If {x,: x € A}
is a directed family in X, the ranges of the sections of this family form a filter
base on X; the corresponding filter is called the section filter of the family.



