Lysosomes & Lysosomal Storage Diseases

Editors John W. Callahan • J. Alexander Lowden

Lysosomes and Lysosomal Storage Diseases

Editors

John W. Callahan, Ph.D. J. Alexander Lowden, M.D., Ph.D.

Neurosciences Division Research Institute, The Hospital for Sick Children Toronto, Ontario, Canada

Raven Press New York

© 1981 by Raven Press Books, Ltd. All rights reserved. This book is protected by copyright. No part of it may be reproduced, stored in a retrieval system, or transmitted, in any form or by any means, electronic, mechanical, photocopying, recording, or otherwise, without the prior written permission of the publisher.

Made in the United States of America

Library of Congress Cataloging in Publication Data

Main entry under title:

Lysosomes and lysosomal storage diseases.

(Advances in pediatric research)

Includes bibliographical references and index.

1. Carbohydrate metabolism disorders. 2. Lysosomes —Diseases. 3. Lipidosis. 4. Metabolism, Inborn errors of. I. Callahan, John W. II. Lowden, J. Alexander. III. Series. [DNLM: 1. Lysosomes. 2. Metabolism, Inborn errors. QH603.L9 L993] RC632.C3L96 616.3'998 79–5315 ISBN 0-89004-476-7

Great care has been taken to maintain the accuracy of the information contained in the volume. However, Raven Press cannot be held responsible for errors or for any consequences arising from the use of the information contained herein.

Preface

In 1955 Christian de Duve coined the term *lysosome*, meaning lytic particles, for membrane-bound organelles containing five acid hydrolases that he and his colleagues had been studying for several years. Those five enzymes have barely been mentioned in this volume because only one is inactive in a recognized storage disease. In 1955, none of the storage disorders described in these chapters was known to result from a defect in an acid hydrolase. Today, twenty-five years later, a wealth of knowledge about the molecular biology of the lysosome has accumulated, much of it uncovered by investigations of the many genetic perturbations of the enzymes located in this fascinating organelle. Many questions remain unanswered, however, and this volume is directed toward those problems.

In the presence of a specific lysosomal enzyme deficiency, the activity of some hydrolases is markedly elevated while that of others is within normal limits. How are the enzymes programmed to become part of the lysosomal apparatus? If all lysosomal hydrolases were synthesized and parcelled in unison, one would expect that the activities of all of them would rise and fall to the same degree. This does not appear to happen, and one tantalizing hypothesis presumes the existence of clones of primary lysosomes each containing a defined array of lytic enzymes. Each clonal population could be separately programmed and targeted. The concept also presupposes receptor domains in the endoplasmic reticulum that act as templates for organelle formation.

In this book we have attempted to bring together studies on the molecular biology of the lysosome and its enzymes with reports on several of the genetic defects in the activity of these enzymes. The first part of the volume discusses genetic and metabolic regulation of lysosomal activity, aspects of complex carbohydrate biosynthesis and recognition, processing and compartmentalization of lysosomal hydrolases. This background serves as a foundation for discussion of the structure and function of a variety of lysosomal hydrolases involved in the catabolism of sphingolipids, glycoproteins, and glycosaminoglycans.

Understanding the structural and kinetic properties of the hydrolases and identification of the genetic defects in storage diseases allows the investigation of genetic heterogeneity, carrier screening programs, and development of strategies for treatment such as enzyme replacement. The order in which these subjects are discussed follows from the molecular aspects of lysosomes and hydrolases to the applied clinical area of enzyme replacement. The authors of the chapters were chosen because of their special expertise and outstanding contributions to the current state of knowledge. Not only do portions of the subject matter present new unreported data but the text provides a framework for many chal-

vi PREFACE

lenging new ideas which presently lack a firm foundation of experimental data. In a volume of this size one cannot cover the vast field of knowledge about the lysosome and its related storage diseases. We have attempted to highlight important areas where new developments have taken place in recent months. The volume will be of value to research scientists in the area of biochemistry, genetics, and neurochemistry as well as to physicians in pediatrics, neurology, and internal medicine.

The Editors

Acknowledgments

This volume contains the proceedings of a conference on "Lysosomes and Lysosomal Storage Diseases" held in October 1979 at the Hospital for Sick Children in Toronto.

We are indebted to Audrey Francis who assisted in the planning and operation of the conference; to Shirley Mohamed for valuable assistance and to the following for financial support: The Hospital for Sick Children Foundation, the Government of Ontario, Fisher Scientific and Pfizer Canada.

Contributors

Masazumi Adachi

Neuroscience Center, Kingsbrook Jewish Medical Center Downstate Medical Center State University of New York Brooklyn, New York 11203

Jack A. Alhadeff

Department of Neurosciences, School of Medicine University of California, San Diego La Jolla, California 92093

Daniel Amsterdam

Neuroscience Center of the Kingsbrook Jewish Medical Center Downstate Medical Center State University of New York Brooklyn, New York 11203

Alan M. Appel

Division of Human Genetics
Department of Pediatrics at Children's Hospital
State University of New York at Buffalo
Buffalo, New York 14222

Henry J. Baker

Department of Comparative Medicine University of Alabama at Birmingham University Station Birmingham, Alabama 35294

R. Roy Baker

Clinical Sciences Division University of Toronto Toronto, Ontario, Canada M5S 1A8

John A. Barranger

Developmental and Metabolic Neurology Branch
National Institute of Neurological and Communicative Disorders and Stroke
National Institutes of Health
Bethesda, Maryland 20205

David F. Bishop

Division of Medical Genetics Mount Sinai School of Medicine New York, New York 10029

Roscoe O. Brady

Developmental and Metabolic Neurology Branch
National Institute of Neurological and
Communicative Disorders and
Stroke
National Institutes of Health
Bethesda, Maryland 20205

Steven E. Brooks

Neurosciences Center of the Kingsbrook Jewish Medical Center Downstate Medical Center, State University of New York Brooklyn, New York 11203

John K. Burgess

Department of Pediatrics
Atlantic Research Center for Mental
Retardation
Dalhousie University
Halifax, Nova Scotia, Canada B3H
4H7

John W. Callahan

Division of Neurosciences Research Institute The Hospital for Sick Children Toronto, Ontario, Canada M5G 1X8

Christine A. Collins

Department of Biochemistry Michigan State University East Lansing, Michigan 48824

Robert J. Desnick

Division of Medical Genetics Mount Sinai School of Medicine New York, New York 10029

H. David Fischer

Department of Pediatrics and Genetics Washington University School of Medicine

St. Louis, Missouri 63110

Thomas F. Fletcher

Department of Veterinary Biology University of Minnesota St. Paul, Minnesota 55108

Arvan L. Fluharty

Neuropsychiatric Institute UCLA, Research Group at Lanterman State Hospital Pomona, California 91766

Hudson H. Freeze

Department of Neurosciences School of Medicine University of California, San Diego La Jolla, California 92093

F. Scott Furbish

Developmental and Metabolic Neurology Branch

National Institute of Neurological and Communicative Disorders and Stroke

National Institutes of Health Bethesda, Maryland 20205

Andrew E. Gal

Developmental and Metabolic Neurology Branch

National Institute of Neurological and Communicative Disorders and Stroke

National Institutes of Health Bethesda, Maryland 20205

J. Gerrie

Division of Neurosciences Research Institute The Hospital for Sick Children Toronto, Ontario, Canada M5G 1X8

Reynold Gold

Department of Medical Genetics University of Toronto Toronto, Ontario, Canada M5S 1A8

Alfonso Gonzalez-Noriega

Department of Pediatrics and Genetics Washington University School of Medicine

St. Louis, Missouri 63110

R. A. Gravel

Department of Genetics Research Institute The Hospital for Sick Children Toronto, Ontario, Canada M5G 1X8

Y. Gravel

Division of Neurosciences Research Institute The Hospital for Sick Children Toronto, Ontario, Canada M5G 1X8

Jeffrey H. Grubb

Department of Pediatrics and Genetics Washington University School of Medicine

St. Louis, Missouri 63110

Linda Hamed

Department of Pediatrics
Atlantic Research Centre for Mental
Retardation
Dalhousie University
Halifax, Nova Scotia, Canada B3H
4H7

Linda M. Hoffman

Neuroscience Center, Kingsbrook Jewish Medical Center Brooklyn, New York 11203

C. S. Jones

Division of Neurosciences Research Institute The Hospital for Sick Children Toronto, Ontario, Canada M5G 1X8

Michael M. Kaback

Harbor U.C.L.A. Medical Center U.C.L.A. School of Medicine Torrance, California 90509

N. M. K. Ng Ying Kin

Donner Laboratory of Experimental Neurochemistry Montreal Neurological Institute Montreal, Quebec, Canada H3A 2B4

Udo Klein

Physiologisch-Chemisches Institut der Westfälischen Wilhelms-Universität 4400 Münster, West Germany

Edwin H. Kolodny

Eunice Kennedy Shriver Center for Mental Retardation, Inc. Waltham, Massachusetts 02154

Cecilia R. Kovac

Division of Medical Genetics Mount Sinai School of Medicine New York, New York 10029

Barry C. Kress

Department of Neurosciences School of Medicine University of California, San Diego La Jolla, California 92093

John W. Kusiak

Developmental and Metabolic Neurology Branch
National Institute of Neurological and
Communicative Disorders and
Stroke
National Institutes of Health
Bethesda, Maryland 20205

James W. Kurtz

Department of Biochemistry Michigan State University East Lansing, Michigan 48824

Su-Chen Li

Department of Biochemistry Tulane University School of Medicine New Orleans, Louisiana 70112

Yu-Teh Li

Department of Biochemistry Tulane University School of Medicine New Orleans, Louisiana 70112

C. Lee

Division of Neurosciences The Hospital for Sick Children Toronto, Ontario, Canada M5G 1X8

J. Alexander Lowden

Division of Neurosciences Research Institute The Hospital for Sick Children Toronto, Ontario, Canada M5G 1X8

D. Mahuran

Division of Neurosciences Research Institute The Hospital for Sick Children Toronto, Ontario, Canada M5G 1X8

Arnold L. Miller

Department of Neurosciences School of Medicine University of California, San Diego La Jolla, California 92093

Hugo W. Moser

John F. Kennedy Institute Baltimore, Maryland 21205

Mary G. Murphy

Department of Pediatrics Atlantic Research Center for Mental Retardation Dalhousie University Halifax, Nova Scotia, Canada B3H

Marvin Natowicz

Department of Pediatrics and Genetics Washington University School of Medicine

St. Louis, Missouri 63110

Jane Nester

Department of Comparative Medicine University of Alabama at Birmingham University Station Birmingham, Alabama 35294

Elizabeth F. Neufeld

Genetics and Biochemistry Branch National Institute of Arthritis, Metabolism and Digestive Diseases National Institutes of Health Bethesda, Maryland 20205

A. Novak

Division of Neurosciences Research Institute The Hospital for Sick Children Toronto, Ontario, Canada M5G 1X8

John S. O'Brien

Department of Neurosciences University of California, San Diego School of Medicine La Jolla, California 92093

Grant C. Olson

University of Colorado Health Science Center Department of Pediatrics Denver, Colorado 80262

Kenneth Paigen

Department of Molecular Biology Roswell Park Memorial Institute Buffalo, New York 14222

Peter G. Pentchev

Developmental and Metabolic Neurology Branch
National Institute of Neurological and

Communicative Disorders and Stroke

National Institutes of Health Bethesda, Maryland 20205

Reed E. Pyeritz

John F. Kennedy Institute Baltimore, Maryland 21205

Mario C. Rattazzi

Division of Human Genetics

Department of Pediatrics at Children's Hospital

State University of New York at Buffalo

Buffalo, New York 14222

H. Schachter

Department of Biochemistry
Research Institute
The Hospital for Sick Children
Toronto, Ontario, Canada M5G 1X8

Larry Schneck

Neuroscience Center Kingsbrook Jewish Medical Center Brooklyn, New York 11203

Nancy B. Schwartz

Department of Pediatrics and Biochemistry University of Chicago Chicago, Illinois 60637

P. Shankaran

Division of Neurosciences Research Institute The Hospital for Sick Children Toronto, Ontario, Canada M5G 1X8

Larry J. Shapiro

Division of Medical Genetics Harbor-U.C.L.A. Medical Center Torrance, California 90509

M. A. Skomorowski

Division of Neurosciences Research Institute The Hospital for Sick Children Toronto, Ontario, Canada M5G 1X8

William S. Sly

Division of Medical Genetics St. Louis Children's Hospital St. Louis, Missouri 63110

James E. Smolen

Division of Rheumatology
Department of Medicine
New York University Medical Center
New York, New York 10010

Matthew W. Spence

Department of Pediatrics
Atlantic Research Center for Mental
Retardation
Dalhousie University
Halifax, Nova Scotia, Canada B3H
4H7

Erich R. Sperker

Department of Pediatrics
Atlantic Research Center for Mental
Retardation
Dalhousie University
Halifax, Nova Scotia, Canada B3H
4H7

Gérard Strecker

Laboratoire de Chimie Biologique Universite des Sciences et Technique de Lille Villeneuve d'Ascq Cedex (France)

Kunihiko Suzuki

Department of Neuroscience
The Rose F. Kennedy Center for Research in Mental Retardation and
Human Development
Albert Einstein College of Medicine
Bronx, New York 10461

Carol W. Tiffany

Department of Neuroscience
The Rose F. Kennedy Center for Research in Mental Retardation and
Human Development
Albert Einstein College of Medicine
Bronx. New York 10461

M. David Ullman

Center for Disease Control Atlanta, Georgia 30333

Kurt von Figura

Physiologisch-Chemisches Institut der Westfälischen Wilhelms-Universität Münster. West Germany

Gerald Weissmann

Division of Rheumatology Department of Medicine New York University Medical Center New York, New York 10010

William W. Wells

Department of Biochemistry Michigan State University East Lansing, Michigan 48824

David A. Wenger

University of Colorado Health Science Center Department of Pediatrics Denver, Colorado 80262

Leonhard S. Wolfe

Donner Laboratory of Experimental Neurochemistry Montreal Neurological Institute Montreal, Quebec, Canada H3A 2B4

Tatsuhiro Yamanaka

The Rose F. Kennedy Center for Research in Mental Retardation and Human Development Albert Einstein College of Medicine Bronx, New York 10461

LIST OF ENZYMES AND ENZYME COMMISSION NUMBERS

Enzyme	E. C. Number
Acid lipase (triacyl glycerol lipase) Acid phosphatase APS kinase	EC.3.1.1.3 EC.3.1.3.2 EC.2.7.1.25
APS phosphohydrolase	EC.2.7.1.23 EC.3.1.3.30
APS sulfohydrolase	EC.3.6.2.2
APS sulfotransferase	EC.2.8.2.5
ATP sulfurylase	EC.2.7.7.4
Arylsulfatase	EC.3.1.6.1
α-L-Fucosidase	EC.3.2.1.51
α -galactosidase	EC.3.2.1.22
α-L-Iduronidase	EC.3.2.1.76
α -Mannosidase	EC.3.2.1.24
α-Neuraminidase	EC.3.2.1.18
β -galactosidase	EC.3.2.1.23
β -glucuronidase	EC.3.2.1.31
β -N-acetylhexosaminidase	EC.3.2.1.52
galactosylceramide β -galactosidase	EC.3.2.1.46
galactosylceramide 3-SO ₄ sulfatase	EC.3.1.6.8
glucosylceramide β -glucosidase	EC.3.2.1.45
Sphingomyelinase	EC.3.1.4.12
Sulfoglucosamine sulfamidase (sulfamatase)	EC.3.10.1.1

LIST OF ABBREVIATIONS

Acid phosphatase Ac Ph α-I -fucosidase a-L-Fuc α-galactosidase a-Gal α-N-acetylgalactosaminidase α-Gal NAc α-glucosidase a-Glc α-N-acetylglucosaminidase a-Glc NAc α-Iduronidase a-IdoU α-Man α-Mannosidase α-Neuraminidase a-Neur Adenosine phosphosulfate APS Arvlsulfatase A ASA ASB Arylsulfatase B Adenosine triphosphate ATP B-galactosidase B-Gal B-glucosidase B-Glc B-Glucuronidase B-GlcU B-Hexosaminidase B-Hex **B-X**vlosidase B-Xvl Lactosylceramide CDH C4S Chondroitin 4 sulfate dermatan sulfate DS 4-MU-β-gal 4-methylumbelliferyl-\(\beta\)-D-galactopyranoside 4-methylumbelliferyl-β-D-glucopyranoside 4-MU-β-glc 4-methylumbelliferyl-2-acetamido-2-deoxy-β-D-4-MU-β-glcNAc glucopyranoside 4-methylumbelliferylsulfate 4-MU-SO4 4-MU-B-Xvl 4-methylumbelliferyl-β-D-xyloside Galactosylceramide (galactocerebroside) Gal-cer Galactosylceramide β-galactosidase Gal-cer B-gal GalNAc-4-SO₄ Sulf N-acetylgalactosamine 4-sulfate sulfatase Gal-3-SO₄ Sulf Galactose 3-sulfate sulfatase Gal-6-SO4 Sulf Galactose 6-sulfate sulfatase Globotriaosylceramide (trihexosylceramide) Gb₃Cer Gb₄Cer Globotetraosylceramide (globoside) GDla, GDlb disialogangliosides Glc-cer Glucosylceramide (gluco-cerebroside) Glc-cer B-glc Glucosylceramide β -glucosidase GlcNAc-6-SO4 N-acetylglucosamine 6-sulfate GlcNAc-6-SO₄ Sulf N-acetylglucosamine 6-sulfate sulfatase G_{M1}, G_{M2}, G_{M3} Monosialogangliosides GlcUA Glucuronic acid HS Heparan sulfate IdoUA Iduronic acid

Keratan sulfate

Mucopolysaccharides

N-acetylneuraminic acid

Iduronic acid 2-sulfate sulfatase

IdoU SO4 Sulf

KS

MPS

NANA

NC-SO₄ PAPS Sulf Sulfamatase TLC Nitrocatechol sulfate Phosphoadenosine phosphosulfate Sulfatase (s) Sulfoglucosamine sulfamidase Thin layer chromatography

Contents

- 1 Genetic Regulation of Lysosomal Enzymes K. Paigen
- 17 Metabolic Regulation of Lysosome Activity W. W. Wells, C. A. Collins, and J. W. Kurtz
- 31 The Secretion of Lysosomal Enzymes from Human Neutrophils: The First Events in Stimulus-Secretion Coupling J. E. Smolen and G. Weissmann
- 63 Biosynthesis of Chondroitin Sulfate Proteoglycan N. B. Schwartz
- 73 Glycoprotein Biosynthesis and Processing H. Schachter
- 95 Oligosaccharides in Lysosomal Storage Diseases G. Strecker
- 115 Recognition and Processing of Lysosomal Enzymes in Cultured Fibroblasts

 E. F. Neufeld
- 131 The Role of the Mannose-6-Phosphate Recognition Marker and its Receptor in the Uptake and Intracellular Transport of Lysosomal Enzymes
 - W. S. Sly, M. Natowicz, A. Gonzalez-Noriega, J. H. Grubb, and H. D. Fischer
- 147 Galactosylceramide Metabolism in Different Regions of the Central Nervous System: Possible Correlation with Regional Susceptibility in Genetic Leukodystrophies
 - T. Yamanaka, T. F. Fletcher, C. W. Tiffany, and K. Suzuki
- 157 Heterogeneity in Gaucher Disease D. A. Wenger and G. C. Olson
- 173 Protein Activators for the Enzymic Hydrolysis of GM₁- and GM₂Gangliosides
 Yu-Teh Li and Su Chen Li

- 181 Hexosaminidases: Changing Concepts of Structure and Function J. A. Lowden, D. Mahuran, A. Novak, C. Lee, and M. A. Skomorowski
- 195 Enzymatic, Biochemical and Morphological Correction of Tay-Sachs Disease Glial Cells In Vitro
 - S. E. Brooks, M. Adachi, L. M. Hoffman, D. Amsterdam, and L. Schneck
- 205 Sphingomyelinases and Niemann-Pick Disease Type C J. W. Callahan, C. S. Jones, P. Shankaran, and J. Gerrie
- 219 Neutral Sphingomyelinases of Brain M. W. Spence, J. K. Burgess, E. R. Sperker, L. Hamed, and M. G. Murphy
- Defects in the Degradation of Heparan SulfateK. von Figura and U. Klein
- 249 Mucopolysaccharide Sulfatases: Arylsulfatase B and the Maroteaux-Lamy Syndrome
 A. L. Fluharty
- 263 Enzymology of the Sialidoses J. S. O'Brien
- 271 I-Cell Disease
 A. L. Miller, H. H. Freeze, and B. C. Kress
- 289 Genetic Complementation Analysis of I-Cell Disease and Pseudo-Hurler Polydystrophy
 R. A. Gravel, Y. L. Gravel, A. L. Miller, and J. A. Lowden
- 299 Human α-L-Fucosidases and Fucosidosis *J. A. Alhadeff*
- Batten Disease and Related Disorders: New Findings on the Chemistry of the Storage Material
 L. S. Wolfe, N. M. K. Ng Ying Kin, and R. R. Baker
- 331 Heterozygote Screening and Prenatal Diagnosis in Tay-Sachs Disease: A Worldwide Update
 M. M. Kaback
- Current Status and Future Direction for Carrier Detection in Lysosomal Storage Diseases
 L. J. Shapiro