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PREFACE

This book has evolved from a course on the subject which I have given
at the University of Illinois for the last five or six years. The course is
a two-semester one meeting three times a week and is required, in their
junior or senior year, of all undergraduates in the curriculum of engi-
neering physics. In addition, a good proportion of the incoming gradu-
ate students in physics customarily enroll in at least the second semester’s
work. This is especially true if the prior background of the student in
this particular field of classical physics is considered to be inadequate.
Since classical mechanics is a basis for most other advanced courses in
physics, the student should acquire a good deal of facility with this
fundamental subject before attempting to undertake more advanced
work. In this book the only preparation expected of the student is that
obtained from thorough courses in elementary physics and calculus.

The methods of vectors are employed rather extensively throughout
the text. However, no previous preparation on the part of the student
in this regard is assumed, and an introduction to the subject of vector
analysis, adequate for the present text, is presented in Chap. 1. Simi-
larly no prior knowledge of elementary differential equations is neces-
sary, although it must be admitted that a subject such as mechanics
necessarily involves a certain dependence on this important branch of
mathematics. However, the organization of the book is such that those
portions in which a slight knowledge of differential equations is of advan-
tage occur in later chapters of the book. Even here the mathematical
tools are developed where needed and frequent reference is made to
Appendix 2 in which a very brief introduction to the subject of ordinary
differential equations is presented.

The emphasis of the book is quite definitely toward the solution of
problems and, although an effort has been made to include a few very
easy ones in each chapter, some of the exercises are rather difficult and
are calculated to require a good deal of ingenuity on the part-of the
student. Indeed, it is not to be expected that all students will be able
to solve all of the 400-odd problems in the book without assistance.
However, the serious student who rises to the challenge presented by
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vi PREFACE

some of the problems is certain to find himself amply rewarded. The
problem emphasis is easily justified, since the surest way to cultivate an
ability to do physical reasoning is to apply it. Very little indeed can
be learned in & course in mechanics, or physics in general, by the majority
of students if the course is purely of a lecture type in which the solving of
problems plays but a minor role. _

There are upwards of eighty rather carefully selected examples which
are worked out in the text material of the chapters. In addition to
amplifying the mathematical steps.in these solutions, a serious attempt
has been made to present extensive details of the physical reasoning
involved in the problem. In studying these examples the student is
strongly advised against simply reading through the solution given.
Rather should he first reed only the statement of the example and,
following this, attempt to set up the problem himself. In this way the
student’s difficulty with certain aspects of the case will become much
more apparent to him, details which might have passed unnoticed had he
contented himself w1th merely reading through the solution given.

The book is arranged so that, with the possible exception of Chap. 4,
topics occur in the order of increasing difficulty as to both mathematieal
-maturity and physical insight required. For this reason such subjects
as central field motion, accelerated coordinate systems, general rigid body
motion, Lagrangian methods, vibrating systems having several degrees of
freedom, and wave motion are relegated to the latter half of the book.
Although the treatment is primarily intended for a two-semester course
on mechanics, the arrangement and order of the topics presented is such
that the first nine chapters suffice' to meet the demands of most one-
semester courses on the subject.

Certain features of the book reflect the trend of modern physms In
connection with oscillatory motion in one dimension brief mention is
made of nonlinear systems, a topic of ever-increasing importance in
modern technology. In the chapter dealing with theorems concerning
systems of particles, the case of a body in which the mass is varying
~ (witness the rocket) is considered, and the procedure for setting up the
equation of motion for such a situation is described. More space than is
usually customary is devoted to the subject of general rigid body rota-
tions in space. This is in keeping with the present wide interest in the
fields. of magnetic resonance and microwave spectroscopy, with their
obvious applications of this class of motions,

Generalized coordinate methods are not introduced until after l'!gld
body motion is considered. I am strongly of the opinion that the stu-
dent should be taken through the latter material once without the use
of the more sophisticated procedures so as to acquire more of a feeling
than might otherwise have been gained for the way in which the forces



PREFACE vii

are acting and for the selection of suitable eoordinate systems. Not to
be overlooked, also, is the fact that fairly complicated nonholonomic
problems frequently can be successfully attacked step by step with the
less sophisticated methods (witness Prob. 12-19). Such cases often
present difficulty when Lagrangian procedures involving the use of
Lagrangian multipliers (not discussed in this text) are employed.

Vibrating systems of several degrees of freedom are considered in the
light of normal coordinates. One system, the vibrating string, having a
large number of degrees of freedom is treated both from the normal
coordinate and traveling wave points of view.

In conclusitn I wish to mention my great indebtedness to the Cam-
bridge University Press, and to Ginn and Company for graciously grant-
ing me permission for the use of certain of the problems in the text.
Those marked C in the text are taken from the Cambridge publica-
tions: “Statics,” ‘‘Dynamics,” and ‘‘Higher Mechanics,” all by Lamb;
“Dynamics of a Particle,” and ““Elementary Rigid Dynamics,” both by
Routh; Ramsey’s ““ Dynamics’’; and “ Mechanics,” by Love. Many of
these problems are reprinted by these authors from former Cambridge
examinations. A few problems, marked J, are taken from Jeans’ ‘‘ Theo-
retical Mechanies,”’ published by Ginn and Company. The remainder
of the problems are either of my own composition or are taken from
former examination lists that have been used at the University of Illinois.
Some also have been suggested by certain interested individuals.

Finally I wish to thank my colleagues for many helpful suggestions.
I especially wish to thank Professor Ronald Geballe of the University of
Washington, and Professors A. T. Nordsieck and C. P. Slichter of the Uni-
versity of Illinois for their valuable criticisms, suggestions, and comments.

RosErRT A. BECKER
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CHAPTER 1

FUNDAMENTAL PRINCIPLES

1-1. Introductory Remarks. In the present text many basic concepts
will be assumed to be possessed intuitively by the student. Such geo-
metrical terms as position and length have familiar connotations to all
from everyday experience. To some extent these notions are rendered
more precise by secondary school mathematics. The first lends meaning
to the location of a point in space. The second provides a commoxn basis
for describing the distance along a prescribed path between two such

_points. ~If the element of #ime is added and if one inquires into the rate
at which the distance is traversed, the discussion becomes kinematical.
Kinematics, it may be said, is the geometry of motion. Typical kine-
matical quantities are velocity and acceleration. The addition -of the

~ concepts of mass and force, which are physical quantities, brings the con-
 siderations under the heading of méchanics. The concepte of mass and
foree are employed in any elementary text on physics and will be quanti-

- ta.tlvely defined later in the present volume in terms of Newton’s laws.

In order to complete, the list of elementary concepts, it is necessary
to mention two terms which are frequently employed in the discussion
of mechanical problems. These are the particle and the body. The first
of these, an ideslized construct which is convenient in many problems,
is a mass which has no size associated with it. In brief it is a geometrical
point which possesses mass. The body, on the other hand, in general
posseases both mass and extent

1-2. Coordinate Systems. A typical mechanical problem, as apphed
to a given system, is to determine the configuration of that system as a
funetion of time. If it consists of a number of particles, the general
problem will be to specify the positions and velocities of all the particles
in terms of time as the independent variable. In practice, however, it
may be sufficient to determine a much smaller amount of information.
For example, it may be desired to know the way it which the veloéity
~ of one of the particles will vary as its position in space is varied.

In order to attack any problem of this nature, it is necessary first to
select an appropriate coordinate system. We limit ourselves at this
early stage to the familiar rectangular system of the type shown in I"1g 1-1.

1



2 INTRODUCTION TO THEORETICAL MECHANICS

The system Ozyz has its yz plane in the plane of the paper, with y positive
to the right and z positive upward. The z axis points out from the paper
toward the reader and is positive in that direction.

In seiecting suitable coordinates for a problem it is convenient to
retain only the minimum number of distinct coordinates necessary to
describe the motion completely. For example, if a particle is free to
move in one plane, such as a table top, clearly only two coordinates will
be necessary. We may choose the plane of the table to be the zy plane,
as in Fig. 1-2. Suppose the particle is at point P at a given instant.

2

.

Fig. 1-1

Its coordinates are the particular values, z, and y,, of £ and y. In this
case, in which the path is restricted to one plane and the system consists
of but one particle, the system is completely specified by the knowledge,
as functions of time, of the two coordinates, z and y, of the particle. If
two particles were present, both confined to the plane, the specification -
of the system would require four coordinates, the x and y coordinates of
each particle. The removal of the restriction confining the path of the ,
two particles to the plane would require the addition of the z coordinate
for each particle.

‘When the motion is not permitted to extend freely in three dimensions,
the system is said to be subject to constraints. In the instance of the
particles on the table top there exists one constraint the equation of
which is z = O for all time. This is a particular example of the general
condition expressed by

f@y,2) =0 @a-1)

A constraint described by Eq. (1-1) is called an infegrable constraint.
The term integrable is employed here since the differential relation express-
ing the fact that z is not allowed to vary is dz = 0, an expression which
is readily integrated to z = const. The constant of integration is zero
in the present example since the table top is in the plane z = 0. Rela-
tions such as Eq. (1-1) enable one, at the outset of a problem, to reduce
the number of distinct coordinates which are required in order to describe
the system involved in the problem. The number of coordinates elimi-
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nated is just equal to the number of the relations of the type of Eq. (1-1)
which may be present.

Constraints also exist which are of the noniniegrable type, that is, the
equations of these limitations involve differential coefficients in a manner
such that they cannot be integrated. Consequently no coordinates may
be eliminated by means of these relationships. Attention will be called
to these again later in the text (cf. Sec. 13-1).

Simultaneously with the choice of a coordinate system careful atten-
tion must be paid to its state of motion. p
In Sec. 1-20 some of the complications
attending an injudicious selection of
coordinates will be considered.

1-3. Linear Velocity and Accelera-
tion. Consider a particle which is ex-
periencing a rectilinear displacement
from O to P along the path shown in
Fig. 1-3. At a time ¢ the particle is at
a distance s measured from point O
alongthispath. During thesubsequent
increment At of time the particle moves through a distance As The
quantity As/At is called the average velocity (time average) during the inter-
val Af. The instantaneous linear velocity at point s is then defined as

Fia. 1-3

As  ds
lzl—.o Al E = (1-2)
In Eq. (1-2) the symbol & (= ds/dt) has been introduced. It is read
“s dot.” Extensive use will be made of this notation. The term speed
is often employed to denote the maé‘m% de of the velocity. '

A second kmé’ma,tlé\'a;ﬁ quantity which requires definition is the accelera-
tion. Suppose that at point s the particle has a velocity »,. During the
time~AFf‘herea.fter, the velocity changes by an amount Av,. The average
acceleration during this interval A¢ is thus Av,/Af, from which we are
immediately able to define the instantaneous linear acceleration at point s
to be

Here several equivalent symbols for the acceleration have been stated.
The quantity & for example, is read “s double dot.”

It is sometimes convenient to employ the terms average velocity and
average acceleration in the larger sense of being the time average of these
quantities during the entire time T of the translation from O to P. These
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AVerages are

OP . Vp — Vo
P = T a4, = —F (1-3)

where in each case the bar signifies that the time average is meant. In
the second of Eqgs. (1-3) v is the velocity in the s direction at point O
(the initial velocity), and v, is the velocity in the & direction at point ‘P.

The terms uniform velocity and uniform aceeleration will also be encoun-
tered. By uniform velocity and acceleration is meant that the magnitudes

and directions of these quantities remain constant throughout the motion."

_ Example 1-1. A particle starts toward D, from rest at point A (Fig. 1-4). During

the part AB of the path (a distance z,) the particle has a uniforin acceleration a,,

z during the time when the particle is

—— - between .B and C (a distance z,) there

z, Ty _ . is no acceleration, and during the third

A B c - D interval, between C and D, there is &

Fi1o. 1-4 ' uniform acceleration —a., where as is &

positive quantity. The negative sign

signifies that the acceleration i isin the direction. .of decreasing x, that is, a deceleration.

The magnitude of gs is such that the particle will just ‘be brought to rest at D. At
what times will the particle arrive at pomts B, C, and D?

~ 'We note first that the known quantities in t.he problem are a1, Gi, 1, and s, and the

end results must be expressed in terms of thege. For the first step of the motion the

origin of z is chosen to be at A4, where the particle is located at ¢ = 0. The equation

of. motion is

i =g, (1-4)
Integrating once with respeot to time, we have
& =ad + 6 (1-5)

where ¢, is a constant of integration. The constant ¢; can be determined from the
boundary condition that at ¢ = 0 the velocity & = 0also. - Thusc; = 0. Integrating
a secqnd time, we obtain
ai?
=3 - (1-6)

the constant of integration again being zero since z = 0 at ¢ = 0. Thus ¢, the time
" required by the particle to traverse the distance z,, becomes

8 = \/?;Z | (-7

Similarly the time {s requited to pass from B to C can easily be found since the
velocity is unchanged during the interval BC(= zs). From Egs. (1-5) and (1-7)

] Zp = a1l = V20:2: . A (1-8)
Thus the total time required by the particle to go from A to C is ’
(1-9)

T
lac =t 1y = 4f<=1 4+ =
’ [ 3% v 20121

i



FUNDAMENTAL PRINCIPLES b
In the third interval the motion is governed by the equation N
2= —a | (1-10)
from which, ulectmg new origins of and i |
3= —ait + 3 = --a.t+'\/_

v 2(1131

and ‘

iy =
and where the second equality follows since at ¢ = ¢, the velocity is sero. Thus the
© total time #4p required by the particle to pass from A to D becomes

%z, T2 V2a:2;
K] - i i = —_— B il s S 1-11
4D = 1y + s + s e T s T a (1-11)

1-4. Angular Velocity and Acceleration. In a manner very similar to
that for the corresponding linear quantities we are able to define angular
velocity and acceleration. Consider a par-
~ ticle which suffers a translation along a

segment AB of a circle with center at O in
Fig. 1-5. During this translation it under- /
goes a displacement through ZAOB. We
may define in the same way, as for the
- linear case, time rates at which the angu- /&

lar displacement is carried out. Thus at

" any angle § the angular velocity (or sunply Z—"

angular speed, if the magnitude alone is Fra. 1-5

being referred to) in radians per second and

the angular accelération in radians per second per second are deﬁned,

respectively, as
Aé _dé Aw dw d 0
W - hmoM 7 ¢ a lm}, ~ =@ J (1-12)

ELEMENTS OF VECTOR ANALYSIS

-1-B. Vectors and Scalars.! Two® classes of quantities are of great
importance in elementary mechanics. These are veclors and scalars. A

11t was peroeived very early (cf. “The Collected Works of J. Willard Gibbs”,
Vol. II, Longmans, Green & Co., Inc., New York, 1928) that certain phyama.l quum-
ties eould be represented by dnected segmenu having definite components in a given
coordinate system. The relations among these directed segments themselves, rather
than their components, in many onses furnished expressions of physical laws which
did not depend upon any one coordinate system, a noteworthy advance indeed. A
notation was developed, and the rules of manipulation of these quantities were worked
out. The remltmg framework is what is now known as vector amzlym Mathemati-
cians have since put these procedures on a more rigorous basis.

3 In certain more advanced physical problems the two notions of vectors and scalars



