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Preface

Preface to the Second Edition

The second edition is revised, expanded and enhanced. This is now a more
complete text in Stochastic Calculus, from both a theoretical and an appli-
cations point of view. Changes came about, as a result of using this book
for teaching courses in Stochastic Calculus and Financial Mathematics over a
number of years. Many topics are expandsd with more worked out examples
and exercises. Solutions to selected exercises are included. A new chapter
on bonds and interest rates contains derivations of the main pricing mod-
els, including currently used market models (BGM). The change of numeraire
technique is demonstrated on interest rate, currency and exotic options. The
presentation of Applications in Finance is now more comprehensive and seif-
contained. The models in Biology introduced in the new edition include the
age-dependent branching process and a stochastic model for competition of
species. These Markov processes are treated by Stochastic Calculus tech-
niques using some new representations, such as a relation between Poisson
and Birth-Death processes. The mathemaiical theory of filtering is based cn
the methods of Stochastic Calculus. In the new edition, we derive stochastic
equations for a non-linear filter first and cbtain the Kalman-Bucy filter as a
corollary. Models arising in applications are treated rigorously demonstrating
how to apply theoretical results to particular models. This approach might
not make certain places easy reading, however, by using this book, the reader
will accomplish a working knowledge of Stochastic Calculus.

Preface to the First Edition

This book aims at providing a concise presentation of Stochastic Calculus with
some of its applications in Finance, Engineering and Science.

During the past twenty years, there has been an increasing demand for tools
and methods of Stochastic Calculus in varicus disciplines. One of the greatest
demands has come from the growing area of Mathematical Finance, where
Stochastic Calculus is used for pricing and hedging of financial derivatives,
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such as options. In Engineering, Stochastic Calculus is used in filtering and
control theory. In Physics, Stochastic Calculus is used tc study the effects
of random excitations on various physical phenomena. In Biology, Stochastic
Calculus is used to model the effects of stochastic variability in reproduction
and environment on populations.

From an applied perspective, Stochastic Calculus can be loosely described
as a field of Mathematics, thas is concerned with infinitesimal calculus on non-
differentiable functions. The need for this calculus comes from the necessity to
include unpredictable factors into modelling. This is where probability comes
in and the result is a calculus for random functions or stochastic processes.

This is a mathematical text, that builds on theory of functions and prob-
ability and develops the martingale theory, which is highly technical. This
text is aimed at gradually taking the reader from a fairly low technical level
to a sophisticated one. This is achieved by making use of many solved exam-
ples. Every effort has been made to keep presentation as simple as possible,
while mathematically rigorous. Simple proofs are presented, but more techni-
cal proofs are left out and replaced by heuristic arguments with references to
other more complete texts. This allows the reader to arrive at advanced results
sooner. These results are required in applications. For example, the change
of measure technique is needed in options pricing; calculations of conditional
expectations with respect to a new filtration is needed in filtering. It turns out
that completely unrelated applied problems have their solutions rooted in the
same mathematical result. For example, the problem of pricing an option and
the problem of aptimal filtering of a noisy sigral, both rely on the martingale
representation property of Brownian motion.

This text presumes less initial knowledge than most texts on the subject
(Métivier (1982), Dellacherie and Meyer (1982), Protter (1992), Liptser and
Shiryayev {1989), Jacod and Shiryayev (1987}, Karatzas and Shreve (1988),
Stroock and Varadhan (1979), Revuz and Yor (1991), Rogers and Williams
{1990)), however it still presents a fairly complete and mathematically rigorous
treatment of Stochastic Calculus for both continuous processes and processes
with jumps.

A brief description of the contents follows (for more details see the Table
of Contents). The first two chapters describe the basic results in Calculus and
Probability needed for further development. These chapters have examples but
no exercises. Some more technical results in these chapters may be skipped
and referred to later when needed.

In Chapter 3, the two main stochastic processes used in Stochastic Calculus
are given: Brownian motion (for calculus of cortinuous processes) and Poisson
process (for calculus of processes with jumps). Integratior with respect to
Brownian motion and closely related processes (It6 processes) is introduced
in Chapter 4. It allows one to define a stochastic differentisl equation. Such
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equations arise in applications when random noise is introduced into ordinary
differential equations. Stochastic differential equations are treated in Chapter
5. Diffusion processes arise as solutions to stochastic differential equations,
they are presented in Chapter 6. As the name suggests, diffusions describe a
real physical phenomenon, and are met in many real life applications. Chapter
7 contains information about martingales, examples of which are provided by
It6 processes and compensated Poisson processes, introduced in earlier chap-
ters. The martingale theory provides the main tools of stochastic calculus.
These include optional stopping, localization and martingale representations.
These are abstract concepts, but they arise in applied problems, where their
use is demonstrated. Chapter 8 gives a brief account of calculus for most
general processes, called semimartingales. Basic results include Itd's formula
and stochastic exponential. The reader has already met these concepts in
Brownian motion calculus given in Chapter 4. Chapter 9 treats Pure Jump
processes, where they are analyzed by using compensators. The change of
measure is given in Chapter 10. This topic is important in opticns pric-
ing, and for inference for stochastic processes. Chapters 11-14 are devoted
to applications of Stochastic Calculus. Applications in Finance are given in
Chapters 11 and 12, stocks and currency options (Chapter 11); bonds, inter-
est rates and their options (Chapter 12). Applications in Biology are given
in Chapter 13. They include diffusion models, Birth-Death processes, age-
dependent (Bellman-Harris) branching processes, and a stochastic version of
the Lotka-Volterra model for competition of species. Chapter 14 gives ap-
plications in Engineering and Physics. Equations for a non-linear filter are
derived, and applied to obtain the Kalman-Bucy filter. Random perturba-
tions to two-dimensional differential equations are given as an application in
Physics. Exercises are placed at the end of each chapter.

This text can be used for a variety of courses in Stochastic Calculus and
Financial Mathematics. The application to Finance is extensive enough to
use it for a course in Mathematical Finance and for self study. This text is
suitable for advanced undergraduate students, graduate students as well as
research workers and practioners.
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Chapter 1

Preliminaries ¥From
Calculus

Stochastic calculus deals with functions of time £, 0 < ¢ < T'. In this chapter
some concepts of the infinitesimal calculus used in the sequel are given.

1.1 Functions in Calculus

Continuous and Differentiable Functions

A function g is called continuous at the point ¢ = to if the increment of g over
small intervals is small,

Ag(t) = g(t) — g(to) = 0as At =t — 1o — 0.

If g is continuous at every point of its domain of definition, it is simply
called continuous.
g is called differentiable at the point t = ¢, if at that point

. Ag(t)
Ag ~ CAt or AI%I—I}O—AT_ = C,
this constant C is denoted by g¢’(ts). If g is differentiable at every point of its
domain, it is called differentiable.
An important application of the derivative is a theorem on finite incre-
ments.

Theorem 1.1 (Mean Value Theorem) If f is continuous on [a,b] and has
a derivative on (a,b), then there is ¢, a < ¢ < b, such that

f(6) — f(a) = f(c)(b —a). (1.1)
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Clearly, differentiability implies continuity, but not the other way around,
as continuity states that the increment Ag converges to zero together with
At, whereas differentiability states that this convergence is at the same rate
or faster.

Example 1.1: The function g(t) = v/t is not differentiable at 0, as at this point

as t — 0.

It is surprisingly difficult to construct an example of a continuous function
which is not differentiable at any point.

Example 1.2: An example of a continuous, nowhere differentiable function was
given by the Weierstrass in 1872: for 0 <t < 2w

=3 cfsg-'ﬂ (1.2)
n=1

We don’t give a proof of these properties, a justification for continuity is given
by the fact that if a sequence of continuous functions converges uniformly, then the
limit is continuous; and a justification for non-differentiability can be provided in
some sense by differentiating term by term, which results in a divergent series.

To save repetition the following notations are used: a continuous function f
is said to be a C function; a differentiable function f with continuous derivative
is said to be a C! function; a twice differentiable function f with continuous
second derivative is said to be a C? function; etc.

Right and Left-Continuous Functions

We can rephrase the definition of a continuous function: a function g is called
continuous at the point ¢ = #( if

Jlim g(t) = g(to), (1.3)

it is called right-continuous (left-continuous) at t; if the values of the function
g(t) approach g(tp) when ¢ approaches ty from the right (left)

lim g(¢) = g(%o), (lim g(2) = g(%0).) (1.4)

If g is continuous it is, clearly, both right and left-continuous.
The left-continuous version of g, denoted by g(t—), is defined by taking left
limit at each point,
g(t-) = lim g(s). (1.5)
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From the definitions we have: g is left-continuous if g{t) = g(t—).
The concept of g(t+) is defined similarly,

g(t+) = lim g(s). (1.6)

If g is a right-continuous function then g(t+) = g(t) for any ¢, so that g, = g.

Definition 1.2 A point t is called a discontinuity of the first kind or a jump
point if both limits g(t+) and g(t—) ezist and are not equal. The jump at t is
defined as Ag(t) = g(t+) — g(t—). Any other discontinuity is said to be of the
second kind.

Example 1.8: The function sin(1/t) for ¢t # 0 and 0 for ¢t = 0 has discontinuity of
the second kind at zero, because the limits from the right or the left don’t exist.

An important result is that a function can have at most countably many
jump discontinuities (see for example Hobson (1921), p.286).

Theorem 1.3 A function defined on an interval [a,b] can have no more than
countably many jumps.

A function, of course, can have more than countably many discontinuities, but
then they are not all jumps, i.e. would not have limits from right or left.

Another useful result is that a derivative cannot have jump discontinuities
at all.

Theorem 1.4 If f is differentiable with a finite derivative f'(t) in an interval,
then at all points f'(t) is either continuous or has a discontinuity of the second

kind.
PRroOF: If tis such that f'(t+) = lim,y; f'(s) exists (finite or infinite), then

by the Mean Value Theorem the same value is taken by the derivative from
the right

£t = tim LEFA =IO

Atl0 A T Al0,0<c<A

f'le) = f'(t+).

Similarly for the derivative from the left, f/'(t) = f’(¢—). Hence f'(t) is con-
tinuous at t. The result follows.

O
This result explains why functions with continuous derivatives are sought as
solutions to ordinary differential equations.
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Functions considered in Stochastic Calculus

Functions considered in stochastic calculus are functions without discontinu-
ities of the second kind, that is functions that have both right and left limits
at any point of the domain and have one-sided limits at the boundary. These
functions are called regular functions. It is often agreed to identify functions
if they have the same right and left limits at any point.

The class D = D[0,T] of right-continucus functions on [0,7] with left
limits has a special name, cddlég functions (which is the abbreviation of “right
continuous with left limits” in French). Sometimes these processes are called
R.R.C. for regular right continuous. Notice that this class of processes includes
C, the class of continuous functions.

Let g € D be a cadlag function, then by definition, all the discontinuities
of g are jumps. By Theorem 1.3 such functions have no more than countably
many discontinuities.

Remark 1.1: In stochastic calculus Ag(t) usually stands for the size of the
jump at t. In standard calculus Ag(t) usually stands for the increment of g
over [t,t + A], Ag(t) = g(t + A) — g(t). The meaning of Ag(t) will be clear
from the context.

1.2 Variation of a Function

If g is a function of real variable, its variation over the interval [a, b] is defined
as

n
Vo(la, b)) =sup ) _ |g(¢F) — g(¢4)l, (1.7)
i=1
where the supremum is taken over partitions:
a=ty <tl <...<th=b (1.8)

Clearly, (by the triangle inequality) the sums in (1.7) increase as new points
are added to the partitions. Therefore variation of g is

Vo(la, b)) = Jlim 3~ lg(tF) — g(t_1)l, (19)
T =1

where 6, = maxi<icn(ti — ti—1). If Vy([a,d]) is finite then g is said to be
a function of finite variation on [a,b]. If g is a function of ¢ > 0, then the
variation function of g as a function of t is defined by

Vo(t) = Vo((0,2]).

Clearly, V;(t) is a non-decreasing function of ¢.
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Definition 1.5 g is of finite variation if V,(t) < oo for allt. g is of bounded
variation if sup, V4(t) < oo, in other words, if for allt, V,4(t) < C, a constant
independent of t.

Example 1.4:

1. If g(t) is increasing then for any i, g(t;) > g(ti—1) resulting in a telescoping
sum, where all the terms excluding the first and the last cancel out, leaving

Vo(t) = g(t) — 9(0).
2. If g(t) is decreasing then, similarly, '
Ve(t) = g(0) — g(¢).

Example 1.5: If g(t) is differentiable with continuous derivative g’(t), g(t) =
j:g'(s)ds, and j;; |’ (s)|ds < oo, then

V(t) = / 16'(s)]ds.
0

This can be seen by using the definition and the mean value theorem. f:'_l g'(s)ds =

g'(&:)(t: — ti—1), for some & € (ti—1,t;). Thus Ift‘i‘_1 g'(s)ds| = |g'(&:)|(ti — ti=1),
and

Vilt) = limY_lott) - o(ti) =tim Y| [ o)l
i=1 i=1 ti—1

= sup 315Nt~ t-0) = | I (ol
i=1 0

The last equality is due to the last sum being a Riemann sum for the final integral.
Alternatively, the result can be seen from the decomposition of the derivative
into the positive and negative parts,

3 t t
oft) = /0 o'(s)ds = /0 l¢'(s)] *ds — fo 16" ()]~ ds.

Notice that [¢'(s)]™ is zero when [g/(s)]* is positive, and the other way around. Using
this one can see that the total variation of g is given by the sum of the variation of
the above integrals. But these integrals are monotone functions with the value zero
at zero. Hence

Vi(t) = /0 lg/(s)]*ds + /0 l¢'(s)]ds
- / (9" + g'(s)]")ds = / 1g'(s)ld.
0 0
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Example 1.6: (Variation of a pure jump function).
If g is a regular right-continuous (cadlag) function or regular left-continuous (caglad),
and changes only by jumps,

g(t) =Y Agls),
0£s8st
then it is easy to see from the definition that

Vi) = > |Ag(s)]

0<s8<t

Example 1.7: The function g(t) = ¢sin(1/t) for £ > 0, and g(0) = 0 is continuous
on [0,1], differentiable at all points except zero, but has infinite variation on any
interval that includes zero. Take the partition 1/(27k + #/2),1/(27k — n/2), k =
1,2,....

The following theorem gives necessary and sufficient conditions for a func-
tion to have finite variation.,

Theorem 1.6 (Jordan Decomposition) Any function g: [0,00) = R of
finite variation can be expressed as the difference of two increasing functions

9(t) = a(t) — b(t).
One such decomposition is given by
aft) = Va(t)  b(t) = Vy(t) — g(t). (1.10)

It is easy to check that b(t) is increasing, and a(2) is obviously increasing. The
representation of a function of finite variation as difference of two increasing
functions is not unique. Another decomposition is

9(6) = 5(Val0) + 9(6)) — 5 (Va(®) ~ (8))-

The sum, the difference and the product of functions of finite variation are also
functions of finite variation. This is also true for the ratio of two functions
of finite variation provided the modulus of the denominator is larger than a
positive constant.

The following result follows by Theorem 1.3, and its proof is easy.

Theorem 1.7 A finite variation function can have no more than countably
many discontinuities. Moreover, all discontinuities are jumps.



