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145 Isoperimetric Inequalities

This introduction treats the classical isoperimetric inequality in Euclidean space
and contrasting rough inequalities in noncompact Riemannian manifolds. In Eu-
clidean space the emphasis is on quantitative precision for very general domains,
and in Riemannian manifolds the emphasis is on qualitative features of the
inequality that provide insight into the coarse geometry at infinity of Riemannian
manifolds.

The treatment in Euclidean space features a number of proofs of the classical
inequality in increasing generality, providing in the process a transition from the
methods of classical differential geometry to those of modern geometric mea-
sure theory; and the treatment in Riemannian manifolds features discretization
techniques and applications to upper bounds of large time heat diffusion in
Riemannian manifolds.

The result is an introduction to the rich tapestry of ideas and techniques of
isoperimetric inequalities, a subject that has beginnings in classical antiquity
and that continues to inspire fresh ideas in geometry and analysis to this very
day - and beyond.

Isaac Chavel is Professor of Mathematics at the City College of The City
University of New York. He received his Ph.D. in mathematics from Yeshiva
University under the direction of Professor Harry E. Rauch. He has published
in international journals in the areas of differential geometry and partial dif-
ferential equations, especially the Laplace and heat operators on Riemannian
manifolds. His other books include Eigenvalues in Riemannian Geometry and
Riemannian Geometry: A Modern Introduction.

He has been teaching at the City College of The City University of New York
since 1970, and he has been a member of the doctoral program of The City, Uni-
versity of New York since 1976. He is a member of the American Mathematical
Society.
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Preface

This book discusses two venues of the isoperimetric inequality: (i) the sharp
inequality in Euclidean space, with characterization of equality, and (ii) isoperi-
metric inequalities in Riemannian manifolds, where precise inequalities are un-
available but rough inequalities nevertheless yield qualitative global geometric
information about the manifolds.

In Euclidean space, a variety of proofs are presented, each slightly more
ambitious in its application to domains with irregular boundaries. One could
easily go directly to the final definitive theorem and proof with little ado, but
then one would miss the extraordinary wealth of approactes that exist to study
the isoperimetric problem. An idea of the overwhelming variety of attack on this
problem can be quickly gleaned from the fundamental treatise of Burago and
Zalgaller (1988); and I have attempted on the one hand to capture some of that
variety, and on the other hand to find a more leisurely studied approach that
covers less material but with more detail.

In Riemannian manifolds, the treatment is guided by two motifs: (a) the
dichotomy between the local Euclidean character of all Riemannian manifolds
and the global geometric properties of Riemannian manifolds, this dichotomy
pervading the study of nearly all differential geometry, and (b) the discretiza-
tion of Riemannian manifolds possessing bounded geometry (some version of
local uniformity). The dichotomy between local and global is expressed, in our
context here, as the study of properties of Riemannian manifolds that remain
invariant under the replacement of a compact subset of the manifold with an-
other of different geometry and topology, as long as the new one fits smoothly
in the manifold across the boundary of the deletion of the original compact
subset. Thus, we do not seek fine results, in that we study coarse robust invari-
ants that highlight the “geometry at infinity” of the manifold. Our choice of
isoperimetric constants will even be invariant with respect to the discretization
of the Riemannian manifold. The robust character of these new isoperimetric

ix



X Preface

constants will then allow us to use this discretization to show how the geometry
at infinity influences large time heat diffusion on Riemannian manifolds.

Regrettably, there is hardly any discussion of isoperimetric inequalities on
compact Riemannian manifoids. That would fill a book ~ quite different from
this one — all by itself.

* * kK

A summary of the chapters goes as follows:

Chapter [ starts with posing the isoperimetric problem in Euclidean space
and gives some elementary arguments toward its solution in the Euclidean plane.
These arguments are essentially a warm-up. They are followed by a summary
of background definitions and results to be used later in the book. Thus the
discussion of the isoperimetric problem, proper. begins in Chapter II.

Chapter I starts with uniqueness theory, under the assumption that the bound-
ary of the solution domain is C2. We first show that, if a domain Q with C?
boundary is a solution to the isoperimetric problem for domains with C 2 bound-
aries, §2 must be an open disk. Then we strengthen the result a bit — we show
that if a domain is but an extremal for isoperimetric problems, then it must be a
disk. Then we consider the existence of a solution to the isoperimetric problem
for domains with C! boundaries. We give M. Gromov’s argument that for such
domains the disk constitutes a solution to the isoperimetric problem. But only if
one restricts oneself to convex domains with C' boundaries does his argument
imply that the disk is the unique solution.

Chapter I11 is the heart of the first half of the book. It expands the isoperimet-
ric problem in that it considers all compacta and assigns the Minkowski area
to each compact subset of Euclidean space to describe the size of the boundary.
In this setting, using the Blaschke selection theorem and Steiner symmetriza-
tion, one shows that the closed disk constitutes a solution to the isoperimetric
problem. Since the Minkowski area of a compact domain with C! boundary is
the same as the differential geometric area of the boundary, the result extends
the solution of the isoperimetric problem from the C! category to compacta.
Moreover, one can use the traditional calculations to show that the disk is the
unique solution to the isoperimetric problem in the C ! category. But uniqueness
in the more general collection of compacta is too difficult for such elementary
arguments.

Then, in Chapter iII, we recapture Steiner’s original intuition that successive
symmetrizations could be applied to any compact set to ultimately have it con-
verge to a closed disk - in the topology of the Hausdorff metric on compact sets.
We use this last argument to prove the isoperimetric inequality for compacta
with finite perimeter. The perimeter, as a measure of the area of the boundary,



Preface xi

seems to be an optimal general setting, since one can not only prove the isoperi-
metric inequality for compacta with finite perimeter, but can also characterize
the case of equality.

In Chapter IV we introduce Hausdorff measure for subsets of Euclidean
space and develop the story sufficiently far to prove that the perimeter of a
Lipschitz domain in n-dimensional Euclidean space equals the (n — 1)-
dimensional Hausdorff measure of its boundary. The proof involves the area
Jormula, for which we include a proof.

Chapter V begins a new view of isoperimetric inequalities, namely, rough
inequalities in a Riemannian manifold. The goal of Chapters V-VIII is to show
how these geometric isoperimetric inequalities influence the qualitative rate of
decay, with respect to time, of heat diffusion in Riemannian manifolds.

In Chapter V we summarize the basic notions and results concerning isoperi-
metric inequalities in Riemannian manifolds, and in Chapter VI we give their
implications for analytic Sobolev inequalities on Riemannian manifolds. Chap-
ter V consists, almost entirely, of a summary of results from my Riemannian
Geometry: A Modern Introduction, and 1 have included just those proofs that
seemed to be important to the discussion here. The discussion of Sobolev in-
equalities in Chapter VI has received extensive treatment in other books, but our
interest is restricted to those inequalities required for subsequent applications.
Moreover, we have also treated the relation of Sobolev inequalities on Rieman-
nian manifolds and their discretizations, one to the other. To my knowledge,
this has yet to be treated systematically in book form.

Chapter VII introduces the Laplacian and the heat operator on Riemannian
manifolds and is devoted to setting the stage for the “main problem” in large
time heat diffusion; its formulation and solution are presented in Chapter VIIL
The book ends with an introduction to the new arguments of A.A. Grigor’yan,
the full possibilities of which have only begun to be realized.

* %k ¥

I have attempted to strike the right balance between merely summarizing back-
ground material (of which there is quite a bit) and developing preparatory argu-
ments in the text. Also, although I have summarized the necessary basic defi-
nitions and results from Riemannian geometry at the beginning of Chapter V,
I occasionally require some of that material in earlier chapters, and I use k& as
though the reader already knows it. This seems the lesser of two evils, the other
evil being to disrupt the flow of the arguments in the first half of the book for
an excursus that would have to be repeated in its proper context later. Most of
that material is quite elementary and standard, so it should not cause any major
problems.



Xii Preface

In order to clarify somewhat the relation between material quoted and ma-
terial presented with proofs, I have referred to every result that either is an
exercise or that relies on a treatment outside this book as a proposition, and
every result proven in the book as a theorem. This is admittedly quite artificial
and obviously gives rise to some strange effects, in that the titles proposition
and theorem are often (if not usually) used to indicate the relative significance
of the results discussed. That is not the case here.

There are bibliographic notes at the end of each chapter. They are intended
to give the reader some guidance to the background material, and to give but
an introduction to a definitive study of the literature.

It is a pleasure to thank the many people with whom I have been associated
in the study of geometry since I first came to the City College of CUNY in
1970: first and foremost, Edgar A. Feldman and the other geometers of the City
University of New York - J. Dodziuk, L. Karp, B. Randol, R. Sacksteder, and
J. Velling. Also, I have benefited through the years from the friendship and
mathematics of I. Benjamini, M. van den Berg, P. Buser, E. B. Davies, J. Eels,
D. Elworthy, A. A. Grigor’yan, E. Hsu, W. 8. Kendall, F. Morgan, R. Osserman,
M. Pinsky and D. Sullivan. But, as is well known, any mistakes herein are all
mine.

The isoperimetric problem has been a source of mathematical ideas and
techniques since its formulation in classical antiquity, and it is still alive and
well in its ability to both capture and nourish the mathematical imagination.
This book only covers a small portion of the subject; nonetheless, I hope the
presentation gives expression to some of its beauty and inspiration.
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I

Introduction

In this chapter we introduce the subject. We describe the classical isoperimet-
ric problem in Euclidean space of all dimensions, and give some elementary
arguments that work in the plane. Only one approach will carry over to higher
dimensions, namely, the necessary condition established by classical calcu-
lus of variations, that a domain with C? boundary provides a solution to the
isoperimetric problem only if it is a disk. Then we give a recent proof of the
isoperimetric inequality in the plane by P. Topping (which does not include a
characterization of equality), and the classical argument of A. Hurwitz to prove
the isoperimetric inequality using Fourier series. This is followed by a symme-
try and convexity argument in the plane for very general boundaries that proves
the isoperimetric inequality, if one assumes in advance that the isoperimetric
functional D v L2*(3D)/A(D) has a minimizer. (So this is a weak version —
if the isoperimetric problem has a solution, then the disk is also a solution.)
Finally, we present the background necessary for what follows later in our
general discussion, valid for all dimensions. The subsections of §1.3 include a
proof of H. Rademacher’s theorem on the almost everywhere differentiability of
Lipschitz functions, and a proof of the general co-area formula for C! mappings
of Riemannian manifolds. We obtain the usual co-area formula, as well as an

easy consequence: Cauchy’s formula for the area of the boundary of a convex
subset of R* with C! boundary.

L1 The Isoperimetric Problem

Given any bounded domain on the real line (that is, an open interval), the
discrete measure of its boundary (the endpoints of the interval) is 2. And given
any bounded open subset of the line, the discrete measure of its boundary is
greater than or equal to 2, with equality if and only if the open set consists of one
open interval. This is the statement of the isoperimetric inequality on the line.

1



2 Introduction

In the plane, one has three common formulations of the isoperimetric
problem:

1. Consider all bounded domains in R? with fixed given perimeter, length of
the boundary (that is, all domains under consideration are isoperimetric).
Find the domain that contains the greatest area. The answer, of course, will
be the disk. Note that the specific value of the perimeter in question is of no
interest, because all dornains of perimeter L are mapped by a similarity of
R? to all domains with perimeter L, for any given values of L;, L,, and the
image under the similarity of an area maximizer for L, is an area maximizer
for Lz.

2. One insists on a common area of all bounded domains under consideration,
and asks how to minimize the perimeter.

3. Lastly, one expresses the problem as an analytic inequality, namely, since we
know exactly the values of the area of the disk and the length of its boundary,
the isoperimetric problem is then expressed as proving the isoperimetric
inequality

(L1.1) L? > 4n A,

where A denotes the area of the domain under consideration, and L denotes
the length of its boundary. The inequality is extremely convenient, in that it
remains invariant under similarities of R?, and one has equality if the domain
is a disk. One wishes to show that the inequality is always true, with equality
if and only if the domain is a disk.

One can consider the above for any R”, n > 2. The proposed analytic isoperi-
metric inequality then becomes

AQQ) AS*YH

(1.1.2) V()i = V(]Bn))-l/m

where €2 is any bounded domain in R"” and 3% its boundary, V denotes n-
measure and A denotes (n — 1)-measure, B" is the unit disk in R”, and S"~!
the unit sphere in R*. We let wy denote the n-dimensional volume of B” and
a1 the (n — 1)-dimensional surface area of $"~!. It is standard that

_ 271"/2 w _cn-l
T T2 "7 n

(1.1.3) Ca1

where I'(x) denotes the classical gamma function; and (I.1.2) now reads as

A(BR2)

(11.4) V)i >

nwy'’".



L1 The Isoperimetric Problem 3

One wants to prove the inequality and to show that equality is achieved if and
only if 2 is an n-disk. Note that for n = 2 we took in (1.1.4) the square root of
1.L.1).

Remark L.1.1 Throughout the book, domain will refer to a connected open
set. In general, we consider the isoperimetric problem for relatively compact
domains when we are working in the differential geometric setting (Chapters I,
II, V-VII). Therefore, the disks that realize the solution in R" are open. In
Chapters III and IV, where we work in a more general setting, the isoperimetric
problem is considered for compacta. In that setting the disks that realize the
solution in R” are closed.

Remark 1.1.2 We have restricted the isoperimetric problem to domains in R”;
but if we could solve this problem, then the isoperimetric problem for open
sets consisting of finitely many bounded domains would easily follow from the
solution for single domains. Indeed, assume one has the inequality (1.1.2) for
domains in R". If

QL=QUQU...,
where each Q; is a relatively compact domain in R" such that
cAQNcly =0 Vji#k
(cl denotes the closure), then Minkowski’s inequality implies

_ 1
V@' < 3 V@) < — 5 AGR)
A
J

J

(L1.5) - ' 409
nwy,t/n

So the inequality extends to the union of domains. Note that equality implies.
that €2 is a domain.

Remark .1.3 Note that for any domain Q in R”, its volume is the n-dimensional
Lebesgue measure, and if K2 is C! then the area of 3 is given by the standard
differential geometric surface area of a smooth hypersurface in R". However, if
a2 is not smooth, then one must propose an area functional defined on a collec-
tion of domains such that the area functional will give a working definition of the
area of the boundaries of the domains. Besides a number of natural properties
[see the discussions in Burago and Zalgaller (1988)], one requires that the new
definition agree with the differential geometric one when applied to a domain
with smooth boundary. Then, with this new collection of domains and definition
of the area of their boundaries, one wishes to prove the isoperimeric inequality.
Also, one wishes to characterize the case of equality in each of these settings.



4 Introduction

Remark 1.1.4 As soon as one expands the problem to the model spaces of
constant sectional curvature, that is, to spheres and hyperbolic spaces, one has
no self-similarities of the Riemannian spaces in question. And if the disks on
the right hand side of (1.1.2) are to have radius r, then the right hand side of the
inequality in (I.1.2) is no longer independent of the value of r. Nonetheless, one
still has the isoperimetric inequality in the sense that all domains in question
with the same n-volume have the (n — 1)-area of their boundaries minimized
by disks. For n = 2, the analytic formulation reads as follows: If M = MZ,
the model space with constant curvature «, then the isoperimetric inequality
becomes

(L.1.6) L? > 4m A — kA%,

with equality if and only if the domain in question is a disk. Of course, one can
still consider the isoperimetric problem, whether or not it is to be expressed as
an inequality, in the first or second formulation above.

Similarly, one can extend the isoperimetric problem and associated inequali-
ties to surfaces, or, more generally, to Riemannian manifolds. We shall consider
such inequalities in Chapter V.

Remark L.1.5 Finally, one can consider a Bonnesen inequality. In R?, such an
inequality is of the form

L?—4nA>B>0,

where B is a nonnegative geometric quantity associated with the domain that
vanishes if and only if the domain is a disk.

1.2 The Isoperimetric Inequality in the Plane
For any C? path w : (@, B) — R? in the plane, the velocity vector field of @ is
given by its derivative ', and acceleration vector field by »”. We assume that
w is an immersion, that is, ' never vanishes. The infinitesimal element of arc
length ds is given by
ds = |o/(1)] dt.

Given any fg € (a, B), the arc length function of w based at 1, is given by

s(t) = f /(7)) d.



1.2 The Isoperimetric Inequality in the Plane 5
Let
_ o
j' (1)
denote the unit tangent vector field along w,

T

(:R* 5 R?
the rotation of R? by 7/2 radians, and
N=:T

the oriented unit normal vector field along w. Then one defines the curvature «
of w by

1.2.1 — =N
( ) ds o

(indeed, since T is a unit vector field, its derivative must be perpendicular to

itself). Then the formula for the curvature, relative to the original path, is given
by

dT "1
= —— N = ——,
“= s o'
One can easily show that
dN
1.2.2) — = —«T.
ds

The equations (1.2.1) and (1.2.2) are referred to as the Frenet formulae.

One can prove, from (1.2.1), that if the curvature & is constant, then w is an arc
on a circle (if not the complete circle).

1.2.1 Uniqueness for Smooth Boundaries

As a warm-up, we give the argument from classical calculus of variations. Given
the area A, let D vary over relatively compact domains in the plane of area A,
with C! boundary, and suppose the domain Q, 3Q € C?, realizes the minimal
boundary length among all such domains D. We claim that Q is a disk.

Proof Since 2 is relatively compact in R2, there exists a simply connected
domain €2 such that

= Qp\ {finite disjoint union of closed topological disks}.

We claim that since € is a minimizer, then Qp = . If not, we may add the
topological disks to €2, which will increase the area of the domain and decrease



