

Modelling and Forecasting High Frequency Financial Data

Stavros Degiannakis and Christos Floros

© Stavros Degiannakis and Christos Floros 2015

All rights reserved. No reproduction, copy or transmission of this publication may be made without written permission.

No portion of this publication may be reproduced, copied or transmitted save with written permission or in accordance with the provisions of the Copyright, Designs and Patents Act 1988, or under the terms of any licence permitting limited copying issued by the Copyright Licensing Agency, Saffron House, 6–10 Kirby Street, London EC1N 8TS.

Any person who does any unauthorized act in relation to this publication may be liable to criminal prosecution and civil claims for damages.

The authors have asserted their rights to be identified as the authors of this work in accordance with the Copyright, Designs and Patents Act 1988.

First published 2015 by PALGRAVE MACMILLAN

Palgrave Macmillan in the UK is an imprint of Macmillan Publishers Limited, registered in England, company number 785998, of Houndmills, Basingstoke, Hampshire RG21 6XS.

Palgrave Macmillan in the US is a division of St Martin's Press LLC, 175 Fifth Avenue, New York, NY 10010.

Palgrave Macmillan is the global academic imprint of the above companies and has companies and representatives throughout the world.

Palgrave® and Macmillan® are registered trademarks in the United States, the United Kingdom, Europe and other countries

ISBN: 978-1-137-39648-8

This book is printed on paper suitable for recycling and made from fully managed and sustained forest sources. Logging, pulping and manufacturing processes are expected to conform to the environmental regulations of the country of origin.

A catalogue record for this book is available from the British Library.

Library of Congress Cataloging-in-Publication Data

Degiannakis, Stavros, author.

Modelling and forecasting high frequency financial data / Stavros Degiannakis, Christos Floros.

pages cm

ISBN 978-1-137-39648-8 (hardback)

- 1. Finance-Mathematical models. 2. Speculation-Mathematical models.
- 3. Technical analysis (Investment analysis)—Mathematical models.
- I. Floros, C. (Christos), author. II. Title.

HG106.D44 2015 332.01'5195-dc23

2015013168

Modelling and Forecasting High Frequency Financial Data

To Aggelos, Andriana and Rebecca

Stavros Degiannakis

To Ioanna, Vasilis-Spyridon, Konstantina-Artemis and Christina-Ioanna Christos Floros

此为试读,需要完整PDF请访问: www.ertongbook.com

List of Figures

Flash crash of May 6, 2010
Knight Capital collapse (August 2012) 9
Determination of realized variance for day t,
$RV_t^{(\tau)} = \sum_{j=1}^{\tau} \left(\log P_{t_j} - \log P_{t_{j-1}} \right)^2$, when 1000 intraday observations
are available and $\tau=100$ equidistant points in time are considered 45
The cumulative density function of the tri-variate minimum
multivariate gamma distribution, $F_{X_{(1)}}(x; a, \mathbb{C}_{123}) =$
$3F_{X_1}(x) - \sum_{i_1=1}^{2} \sum_{i_2=2}^{3} F_{X_{i_1}, X_{i_2}}(x, x) + F_{X_1, X_2, X_3}(x, x, x)$
volatility, $\log \sqrt{252RV_{t(HL^*)}^{(\tau)}}$, from 12 February 2001 to 23 March 2006 124
The $\log \sqrt{252RV_{t(HL^*)}^{(\tau)}}$ of EURONEXT 100 against the
one-trading-day-ahead realized volatility forecasts, for the period
from 25 January 2005 to 23 March 2006
ARMA(1,0) data generated process, with the number of points in
time that the ARMA(1,0) and ARMA(0,1) models are selected by
the SPEC algorithm, for various values of \hat{T} , and in particular for
$\hat{T} = 1,,70$
Average daily squared log-returns, $T^{-1}\sum_{i=1}^{T}v_{i}^{2}$, average daily
realized volatility, $T^{-1}\sum_{t=1}^{T}RV_{t}^{(\tau)}$, and average intraday autocovariance, $2T^{-1}\sum_{t=1}^{T}\sum_{j=1}^{\tau-1}\sum_{i=j+1}^{\tau}y_{t_{i}}y_{t_{i-j}}$, for sampling
autocovariance, $2T^{-1}\sum_{t=1}^{T}\sum_{i=1}^{t-1}\sum_{i=i+1}^{t}y_{t_i}y_{t_{i-i}}$, for sampling
frequency of $m = 1, 2, \dots, 40$ minutes
The annualized one-trading-day realized standard deviation,
$\sqrt{252RV_t^{(\tau)}}$
The ω_1 and ω_2 estimates (for interday adjustment of realized
volatility), for 200 iterations, excluding at each iteration either the
highest value of the closed-to-open interday volatility or the highest
value of the intraday volatility 167
The annualized one-trading-day interday adjusted realized standard
deviation, $\sqrt{252RV_{t(HL^*)}^{(\tau)}}$
The estimated density of annualized one-trading-day interday
adjusted realized daily variances, $252RV_{t(HL^*)}^{(\tau)}$

5.6	The estimated density of annualized one-trading-day interday
	adjusted realized daily standard deviations, $\sqrt{252RV_{t(HL^*)}^{(\tau)}}$ 17.
5.7	The estimated density of annualized interday adjusted realized daily
	logarithmic standard deviations, $\log \sqrt{252RV_{t(HL^*)}^{(\tau)}}$
5.8	The estimated density of log-return series, y_t
5.9	The estimated density of log return series, 77
3.7	standardized with the annualized one-trading-day interday
	W 2 10
5.10	The $\log \sqrt{252RV_{t+1(HL^*)}^{(\tau)}}$ against the annualized interday adjusted
	realized daily logarithmic standard deviation forecasts,
	$\log \sqrt{252RV_{t+1 t(HL^*)}^{(\tau)}} $
5.11	The parameter estimates of the three models across time $\dots 18$.
5.12	The annualized interday adjusted realized volatility and its forecast,
	$\sqrt{252RV_{(un),t+1 t(HL^*)}^{(\tau)}}$ from the model with the lowest half-sum of
	the squared standardized prediction errors
5.13	The estimated density of the standardized one-step-ahead
3.13	prediction errors, $z_{t+1 t}$, from the ARFIMA(1, d' , 1)-TARCH(1,1)
	model
5.14	The estimated density of the standardized one-step-ahead
	prediction errors, $z_{t+1 t}$, from the HAR-TARCH(1,1) model 19
5.15	The estimated density of the standardized one-step-ahead
	prediction errors, $z_{t+1 t}$, from the AR(2) model
6.1	Simulated DAX30 instantaneous log-prices, 1-min log-prices and
	daily prices of a continuous-time GARCH diffusion model 22
6.2	Simulated DAX30 instantaneous returns, 1-min returns and daily
	returns of a continuous-time GARCH diffusion model
6.3	DAX30 volatility measures: simulated volatility $\sigma_{t+\Delta}^2$, integrated
	volatility IV_t , conditional volatility from GARCH(1,1) on daily
	returns, and daily squared log-returns
6.4	DAX30 continuous-time GARCH diffusion process with jumps 22
6.5	DAX30 simulated and detected jumps
6.6	DAX30 integrated volatility and realized volatility for a
67	continuous-time GARCH model with jumps
6.7	DAX30 integrated volatility and Bi-power variation for a continuous-GARCH jump process
6.8	DAX30 integrated and realized jumps (using bipower variation) 22
6.9	DAX30 integrated volatility and realized outlyingness
0.7	weighted variance
	D

DAX30 integrated and realized jumps (using realized outlyingness	
weighted variance)	29
DAX30 simulated and detected jumps (Intraday jumps)	29
Evolution of the hourly hedge ratios of the DAX 30 index, from 3	
May 2000 to 29 November 2013, (9:00 a.m. to 5:00 p.m.)	55
	weighted variance)

List of Tables

2.1	the continuous time diffusion $\log(p(t+dt)) = \log(p(t)) + \sigma(t) \sqrt{dt} W_1(t)$,
	$\sigma^{2}(t+dt) = 0.00108dt + \sigma^{2}(t)\left(1 - 0.083dt + \sqrt{0.084dt}W_{2}(t)\right). 46$
2.2	Averages of the values of the MSE loss functions of the 200 simulations. The data generating process is the continuous time diffusion $\log(p(t+dt)) = \log(p(t)) + \sigma(t) \sqrt{dt} W_1(t)$,
	$\sigma^{2}(t+dt) = 0.00108dt + \sigma^{2}(t)\left(1 - 0.083dt + \sqrt{0.084dt}W_{2}(t)\right). 46$
4.1(A)	The probability $(1-p)$ that the minimum $X_{(1)}$ of a trivariate gamma vector is less than or equal to ω_{1-p} for $2 \ge \omega_{1-p} \ge 50$, $5 \ge a \ge 50$, and $\rho_{1,2} = 30\%$, $\rho_{1,3} = 60\%$ and $\rho_{2,3} = 95\%$, the
4.1(B)	non-diagonal elements of C_{123}
	non-diagonal elements of C_{123}
4.2	The half-sum of squared standardized one-day-ahead prediction
	errors of the three estimated realized volatility models,
	$X_{m_i} \equiv 2^{-1} \sum_{t=1}^{60} z_{t+1 t}^{2(m_i)}$, for $i = 1, 2, 3 \dots 128$
4.3	Selected values of the cumulative density function,
	$F_{X_{(1)}}(\omega_{1-p}; a=30, \mathbb{C}_{123})$
4.4	ARMA(1,0) data generated process. The half sum of the squared
4.5	standardized one-step-ahead prediction errors: $\frac{1}{2} \sum_{t=71}^{1000} z_{t+1 t}^2$ 129
4.5	The ARMA(1,0) data generated process. The average values (100 iterations) of the loss functions and the percentages of times a
4.6	model achieves the lowest value of the loss function
4.0	The HAR-RV data generated process, with the half-sum of the squared standardized one-step-ahead prediction errors:
4.7	$\frac{1}{2}\sum_{t=1}^{1000}z_{t+1 t}^{2}$ The HAR-RV data generated process, with the average values (100)
	iterations) of the loss functions and the percentages of times a
	model achieves the lowest value of the loss function
5.1	Information for the intraday data
5.2	Estimation of the interday adjusted realized volatility, $RV_{t(HL^*)}^{(\tau)}$ 169

5.3	Descriptive statistics of annualized one-trading-day interday
5.4	adjusted realized daily variances, $252RV_{t(HL^*)}^{(\tau)}$ 175 Descriptive statistics of annualized one-trading-day interday
5.1	adjusted realized daily standard deviations, $\sqrt{252RV_{t(HL^*)}^{(\tau)}}$
5.5	Descriptive statistics of annualized interday adjusted realized daily
	logarithmic standard deviations, $\log \sqrt{252RV_{t(HL^*)}^{(\tau)}}$
5.6	Descriptive statistics of daily log-returns, $y_t \dots 175$
5.7	Descriptive statistics of standardized log-returns, standardized
	with the annualized one-trading-day interday adjusted realized
	standard deviation, $y_t/\sqrt{252RV_{t(HL^*)}^{(\tau)}}$
5.8	The half-sums of squared standardized one-trading-day-ahead
	prediction errors of the three models, $X_{m_i} \equiv 2^{-1} \sum_{t=1}^{\tilde{T}} z_{t+1 t}^{2(m_i)} \dots 194$
5.9	Descriptive statistics of the residuals, $\varepsilon_{t t}$, from the three models 195
5.10	Descriptive statistics of the one-step-ahead prediction errors,
	$\varepsilon_{t+1 t}$, from the three models
5.11	Descriptive statistics of the standardized one-step-ahead
	prediction errors $z_{t+1 t}$, from the three models
5.12	The percentage of times a model achieves the lowest value of the loss function, $\frac{1}{2} \sum_{t=1}^{T} z_{t+1 t}^2$, for $T = 60$
5.13	At each trading day $\hat{T} + 1$, select the model with
	$\min\left(\frac{1}{2}\sum_{t=1}^{\hat{T}}z_{t+1 t}^2\right)$. Then compute the half-sum of $z_{\hat{T}+1 \hat{T}}^2$, for
	the total of $\tilde{T} - \tilde{T} - T$ trading days. Each $z_{\hat{T}+1 \hat{T}}^2$ is computed
	from the model with min $\left(\frac{1}{2}\sum_{t=1}^{\hat{T}}z_{t+1 t}^2\right)$ at each trading day \widehat{T} .
	The first column presents the loss function $\left(\frac{1}{2}\sum_{t=1}^{\tilde{T}-\tilde{T}-T}z_{t+1 t}^2\right)$
	from the strategy of selecting at each trading day the model
	proposed by the SPEC criterion. The last three columns present
	the loss function $\frac{1}{2} \sum_{t=1}^{\tilde{T}-\tilde{T}-T} z_{t+1 t}^2$ of each model 199
5.14	The average of the squared predictive errors of the three models,
	$\bar{\Psi}_{(MSE)}^{(m_i)} = \tilde{T}^{-1} \sum_{t=1}^{\tilde{T}} \Psi_t^{(m_i)}, \text{ for }$
	$\Psi_t^{(m_i)} = \left(\log\sqrt{252RV_{t+1 t(HL^*)}^{(\tau)(m_i)}} - \log\sqrt{252RV_{t(HL^*)}^{(\tau)}}\right)^2 \dots 201$
5.15	The output produced by the program SPA Test Euronext100.ox 201
5.16	The SPA test consistent p-values of the null hypothesis that the
	model with min $(\bar{\Psi}_{(MSF)}^{(m_i)})$ is statistically superior to its competitors 201

5.17	The DM test statistic for testing the null hypothesis that the m_1 model has equal predictive ability with m_2 model, or
	$E\left(\Psi_{(MSE)t}^{(m_1)} - \Psi_{(MSE)t}^{(m_2)}\right) = 0$, against the alternative hypothesis
	that $E\left(\Psi_{(MSE)t}^{(m_1)} - \Psi_{(MSE)t}^{(m_2)}\right) < 0$
6.1	Z jump statistic on log(RV)
6.2	Z jump statistic on RV-ROWVar
6.3	Lee & Mykland test for jumps
7.1	Summary statistics for the hourly returns, from 3 May 2000 to
	29 November 2013 (9:00 a.m. to 5:00 p.m.)
7.2	Estimates of the different models for the sample of hourly
	observations from 9:00 a.m. to 5:00 p.m. of the DAX 30 index and
	its corresponding future contracts (3 May 2000 to 29
	November 2013)
7.3	Summary statistics for the hourly hedge ratios
7.4	Effectiveness analysis of the strategies. The variance reduction, the percentage of $VaR_t^{(a)}$ violations and the $10\sum_{t=1}^{T} \Psi_t^{(VaR)}$ loss
	function, for $1 - a$ at 5%, 1% and 0.1%, are computed for the
	hourly DAX 30 index for the period 21 June 2001 to 29 November
	2013

Acknowledgments

Dr. Stavros Degiannakis and Dr. Christos Floros acknowledge the support from the European Community's Seventh Framework Programme (Marie Curie FP7-PEOPLE-IEF & FP7-PEOPLE-RG) funded under grant agreements no. PIEF-GA-2009-237022 & PERG08-GA-2010-276904. We would like to thank Dr. Enrique Salvador and Dr. Thomas Poufinas for their constructive contribution to the 7th chapter. We are also grateful to the many people (colleagues at the university, researchers, traders and financial market practitioners), who by occasional informal exchange of views have had an influence on these aspects as well. Most importantly, we wish to express our gratitude to our families for their support.

List of Symbols and Operators

```
indicator function; i.e. d(y_t > 0) = 1 if y_t > 0, and
d(.)
                     d(y_t > 0) = 0 otherwise
                     risk-free rate
rf
AIC
                     Akaike's information criterion
                     annual risk-free interest rate
rannual
                     ask price
P_{ask,t}
                     asymmetric parameter in ARCH model
Yi
                     asymmetric power parameter in ARCH model
8
                     autoregressive coefficients
                     average of predictive loss/evaluation function, i.e.
\bar{\Psi}_{(.)}
                     \tilde{\Psi}_{(MSE)} = \tilde{T}^{-1} \sum_{t=1}^{\tilde{T}} (RV_{t+1|t}^{(\tau)} - RV_{t+1}^{(t)})^2
                     average of the daily realized variances
\mu_2
                     average of the squared closed-to-open log-returns
111
Phid,ti
                     bid price
BV_t(m)
                     Bi-Power variation at m sampling frequency
                     calendar time sampling
CTS
                      coefficients of HAR model
\mu_t^{(m_i)}
                     conditional mean estimation of model m_i
                     conditional mean
\mu_t
                      conditional mean's functional form
\mu(.)
                      conditional standard deviation
\sigma_t
\hat{\sigma}_t^2
                      conditional variance estimate
                      conditional variance's functional form
g(.)
CGR
                      Correlated Gamma Ratio distribution
                      correlation coefficient
P
                      counting process
dq_t
                      covariance of market returns and asset
\sigma_{m,i}
                      covariance of realized variance and squared closed-to-open
712
                      log-returns
F_{X_{(1)}}(x; a, C_{12...n})
                     cumulative distribution function of X_{(1)}
F_I^{*n}(t)
                      cumulative distribution function of durations J
```

$F_{T_n}(t)$	cumulative distribution function of epoch T_n
F(.)	cumulative distribution function
$DM_{(\cdot,\cdot)}$ $\Psi_t^{(\cdot,\cdot)}$	Diebold Mariano Statistic
$\Psi_t^{(s)}$	difference of loss/evaluation functions (evaluation
$k^{(m_i)}$	differential) $C_{m} = C_{m}$
**	dimension of vector of unknown parameters $\beta^{(m_i)}$ durations
$J_i = T_i - T_{i-1} \{T_i\}_{i=1}^M$	epochs
$\tau_{i}^{I_{i}I_{i}=1}$	equidistance points (sub-intervals) in time
	estimated parameters of $RV_{t(HL^*)}^{(\tau)}$
$\hat{\theta}^{(T)}$	
-	estimator of θ based on a sample of size T
d'	exponent of the fractional differencing operator $(1-L)^{d'}$ in ARFIMA models
d	exponent of the fractional differencing operator $(1 - L)^d$ in FIGARCH & FIAPARCH models
$\hat{y}_t^{(m)}$	forecasts of y_t from model m
$L_T(.)$	full sample log-likelihood function based on a sample of
	size T
Γ(.)	Gamma function
X_{m_i}	half sum of squared standardized one-step-ahead prediction
	errors of model m_i
HQ ,	Hannan and Quinn information criterion
cinf .	infimum
I_t	information set
$\varepsilon_{t-i t}$	in-sample fitted error at time $t - i$ based on information available at time t
$y_{t-i t}$	in-sample fitted value of conditional mean at time $t - i$
	based on information available at time t
p(t)	instantaneous (unobserved) asset price
$\log p(t)$	instantaneous logarithmic asset price
$\sigma(t)$	instantaneous variance of the rate of return
$\sigma^{2(IQ)}_{[a,b]}$	integrated quarticity
$\sigma^{2(IV)}_{[a,b]}$	integrated variance over the interval [a, b]
P_{lip,t_i}	interpolated price
Ku	kurtosis
$J_{t,\alpha}^{(LM)}$	L&M statistic
L	lag operator
y_{t_j}	log-return over the sub-interval $[t_j - t_{j-1}]$
Уt	log-returnsover the sub-interval $[t, t-1]$

$\Psi_t^{(.)}$	loss/evaluation function that measures the distance between
	volatility and its forecast
$ \varepsilon_{t_j} = \log P_{t_j} - \log p_{t_j} \mathbf{X}_t^{(m_i)} \sigma_{i,t}^{(MAD)} $	market microstructure noise
$\mathbf{X}_{t}^{(m_{i})}$	matrix of $x_t^{(m_i)}$ explanatory variables
$\sigma^{(MAD)}$	Median Absolute Deviation
MMG	Minimum Multivariate Gamma distribution
	minimum value of X_{m_i}
$X_{(1)}$	
$m_{(1)}$	model with the lowest value of X_{m_i}
d_i $MSE^{(\tau)}$	moving average coefficients
	MSE loss (or evaluation) function
\widehat{T}	number of forecasts for out-of-sample evaluation
n	number of models or variables
$egin{array}{cccc} n & & & & & \\ ilde{T} & & & & & \\ ilde{T} & & & & & \\ ilde{H} & & & & & \\ ilde{T} & & \\$	number of observations for out-of-sample forecasting
$reve{T}$	number of observations for rolling sample
$reve{ heta}$	number of parameters of vector θ
T	number of total observations
$ \begin{cases} P_{t_j} \}_{j=1}^{\tau} \\ RV_{t+1 t}^{(\tau)} \end{cases} $	observed asset price
DV(t)	
$RV_{t+1 t}$	one-day-ahead realized variance at time $t+1$ based on information available at time t
$RV_{(un),t+1 t}^{(\tau)}$	one-day-ahead realized variance at time $t+1$ based on
(un), t+1 t	information available at time <i>t</i> (unbiased estimator)
$y_{t+1 t}$	one-step-ahead conditional mean at time $t+1$ based on
71-111	information available at time t
$y_{t+1 t}^{(m_i)}$	one-step-ahead conditional mean at time $t+1$ based on
$y_{t+1 t}$	
_2	information available at time t of model m_i
$\sigma_{t+1 t}^2$	one-step-ahead conditional variance at time $t+1$ based on
1.2	information available at time <i>t</i>
$h_{t+1 t}^2$	one-step-ahead estimate of integrated quarticity given the
	information available at time t
$\varepsilon_{t+1 t}$	one-step-ahead prediction error at time $t+1$ based on
	information available at time t
$z_{t+1 t}$	one-step-ahead standardized prediction error at time
	t+1based on information available at time t
9	order of ARCH form
p	order of GARCH form
k	order of the autoregressive model
1	order of the moving average model
$d_{i,t}$	outlyingness measure
C(L)	polynomial of autoregressive model - AR
B(L)	polynomial of FIGARCH & FIAPARCH models
$\Phi(L)$	polynomial of FIGARCH & FIAPARCH models
D(L)	polynomial of moving average model - MA
D(L)	Polyholillal of moving average model - MA

1	
P_{pre,t_i}	previous tick price
$lRange_{[a,b]}$	price log-range
$c^{E}(t)$	price of the European call option at time t
$Range_{[4],[a,b]}$	price range, four-data-points
$Range_{[a,b]}$	price range
f(.)	probability density function
$QQ_t(m)$	Quad-power quarticity at m sampling frequency
R	
$RJ_t(m)$	realized jumps at m sampling frequency
$ROWQCov_t$	Realized Outlyingness Weighted Covariation
$ROWQuarticity_t(m)$	Realized Outlyingness Weighted Quarticity at m sampling
	frequency
$ROWVar_t$	Realized Outlyingness Weighted Variance
$RV_{[a,b]}^{[2q]}$	realized power variation of order 2q
\mathbf{RCov}_t	realized quadratic covariation
$RV_t^{(\tau)}$	realized volatility at time t , divided in τ points in time
	realized volatility at time i , divided in i points in time realized volatility for the time interval $[a,b]$
$RV_{[a,b]}$ $RV_{(\tau)}^{(\tau)}$	
T(n)	realized volatility of <i>n</i> -trading-days
$RV_{t(FKO)}^{(\tau)}$ $RV_{t(HL^*)}^{(\tau)}$	realized volatility with Fleming's et al dynamic scaling
$RV_{t(HL^*)}^{(\tau)}$	realized volatility with Hansen and Lunde's interday
	adjustment
$RV_{t(Martens)}^{(\tau)}$	realized volatility with Marten's interday adjustment
$\gamma_d(i)$	sample autocovariance of i th order
$m = \frac{b-a}{\tau-1}$	sampling frequency
SBC	Schwarz information criterion
SH	Shibata information criterion
$f_d(0)$	spectral density at frequency zero
N(.)	standard normal density function
$z_t \sim N(0,1)$	standard normal distribution
W(t)	standard Wiener process
SPA	Superior Predictive Ability statistic
t_j	time index, $t_j \ni [a, b]$
[a,b]	time interval
$TQ_t(m)$	Tri-power quarticity at m sampling frequency
$z_t^{(m_i)}$	unpredictable component of model m_i
ε_t	unpredictable component
η_2	variance of the daily realized variances
σ_m^2	variance of the market
η_1	variance of the squared closed-to-open log-returns
\mathbf{Y}_t	vector of dependent variable y_t
θ	vector of estimated parameters for the conditional mean
	and variance

$\theta^{(t)}$	vector of estimated parameters for the conditional mean and variance	
	at time t	
w	vector of estimated parameters for the density function <i>f</i>	
$\mathbf{x}_{t-1}^{(m_i)}$	vector of explanatory variables of m_i regression model	
β	vector of parameters for estimation in regression model	
$\beta^{(m_i)}$	vector of parameters for estimation of m_i regression model	
v_t	vector of predetermined variables included in I_t	
$\Psi_t^{(ES)}$	loss/evaluation function for Expected Shortfall	
$\Psi_t^{(VaR)}$	loss/evaluation function for VaR	
$ES_t^{(a)}$	Expected Shortfall of a portfolio at confidence level a	
$VaR_t^{(a)}$	Value-at-Risk of a portfolio at confidence level <i>a</i>	
$r_{h,t}$	log-return of the hedged portfolio at time <i>t</i>	
\mathbf{R}_t	conditional correlation matrix	
\mathbf{r}_t	vector of returns	
\mathbf{z}_t	vector of standardized error term (residuals)	
ρ_{ij}	constant correlation of spot and future price returns	
$\sigma_{f,t}^2$	variance of future price returns at time t	
$\sigma_{s,t}\sigma_{f,t}$	covariance of spot and future price returns at time t	
$\sigma_{s,t}^2$	variance of spot price returns at time t	
$\Sigma_t(.)$	conditional variance-covariance matrix	
ε_t	vector of error term (residuals)	
$\mu_{t}(.)$	vector of conditional mean	
Δ	first order log-difference	
Δ	log difference	
R^2	coefficient of determination	
Cov (.,.)	covariance	
MVHR	minimum-variance hedge ratio	
diag(.)	diagonal matrix	