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‘A wave is never found alone, but is mingled with as many other waves
as there are uneven places in the object where the said wave is produced.
At one and the same time there will be moving over the greatest wave of
a sca innumerable other waves proceeding in different directions.’

Leonardo da Vinci, Cedice Atlantico, c. 1500. (Translation by E. MacCurdy, The
Notebooks of Leonardo da Vinci.)

‘Since a general solution must be judged impossible from want of analysis,
we inust be content with the knowledge of some special cases, and that
all the more, since the development of various cases seems to be the only
way of bringing us at last to a more perfect knowlzdge.’

Leonhard Euler, Principes généraux du mouvement des fiuides, 1755.

*Wotwithstanding that...the theory is often not a little suspect among
practical men, since nevertheless it rests upon the most certain principles
of mechanics, its truih is in no way weakened by this disagreement, but
rather one must seck the cause of the difference in the circumstances which
are not properly considered in the theory.’

Leonhard Euler, Tentamen theoriae de frictione fluidorum, 1756/7.
(Translations by C. A. Truesdell, Leonhaidi Euleri Opera Omnia, Ser. 2, vol. 12.)



PREFACE

When, over four years ago, I began writing on nonlinear wave interactions
and stability, I envisaged a work encompassing a wider variety of physical
systems than those treated here. Many ideas and phenomena recur in such
apparently diverse fields as rigid-body and fluid mechanics, plasma
physics, optics and population dynamics. But it soon became plain that
full justice could not be done to all these areas - certainly by me and
perhaps by anyone.

Accordingly, I chose to restrict attention to incompressibie fluid mech-
anics, the field that I know best ; but I hope that this work will be of interest
to those in other disciplines, where similar mathematical problems and
analogous physical processes arise.

I owe thanks to many. Philip Drazin and Michael Mclntyre showed me
partial drafts of their owr monographs prior to publication, so enabling
me to avoid undue overlap with their work. My colleague Alan Cairns has
mstructed me in related matters in piasir:a physics, which have infiuenced
my views. General advice and encouragement were gratefully received
from Brooke Benjamin and the series Editor, George Batchelor.

Various peopie kindly supplied photographs and drawings and freely
gave permission to use their work: all are acknowledged in the text. Other

- illustrations were prepared by Mr Peter Adamson and colleagues of St
Andrews University Photographic Unit and by Mr Robin Gibb, University
Cartographer. The bulk of the typing, fror pencil manuscript of duhi< 1s
legibility, was impeccably carried out by Miss Sheila Wilson, with assistance
from Miss Pat Dunne.

My wife Liz, who well knows the traumas of authorship, deserves special
thanks for all her understanding and tolerance; as do our children Ppter
and Katie, for their welcome distractiops.
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Chapter one

INTRODUCTION

1 Introduction
Waves occur throughout Nature in an astonishing diversity of
physical, chemical and biological systems. During the late nineteenth and
the early twentieth century, the linear theory of wave motion was
developed to a high degree of sophistication, particularly in agoustics,
elasticity and hydrodynamics. Much of this ¢ classical’ theory is expounded
" in the famous treatises of Rayleigh (1896), Love (1927) and Lamb (1932).

The classical theory concerns situations which, under suitable simplifying
assumptions, reduce to linear partial differential equations, usually the
wave equation or Laplace’s equation, together with linear boundary
conditions. Then, the principle of superposition of solutions permits
fruitful employment of Fourier-series and integral-transform techniques;
also, for Laplace’s equation, the added power of complex-variable methods
is available."

Since the governing equations and boundary conditions of mechanical
systems are rarely strictly linear and those of fluid mechanics and elasticity
almost never so, the linearized approximation restricts attention to
sufficiently small displacements from some known state of equilibrium or
steady motion. Precisely how small these displacements must be depends
on circumstances. Gravity waves in deep water need only have wave-slopes
small compared with unity; but shallow-water waves and waves in shear

flows must meet other, more stringent, requirements. Violation of these
requirements forces abandonment of the powerful and attractive mathe-
matical machinery of linear analysis, which has reaped such rich harvests.
Yet, even during the nineteenth century, considerable progress was made
in understanding aspects of weakly-nonlinear wave propagation, the most
notable theoretical accomplishments being those of Rayleigh in acoustics
and Stokes for water waves.

!



2 Introduction

Throughout the present century, development of the linear theory of
wave motion in fluids and of hydrodynamic stability has been steady and
substantial: much of this is described in the books of Lin (1955), Stoker
(1957), Chandrasekhar (1961), Lighthill (1978) and Drazin & Reid (1981).
In contrast, the present vigorous interest in nonlinear waves and stability
in fluids dates mainly from the 1960s. Particularly deserving of mention
are the monographs of Eckhaus (1965), Whitham (1974), Phillips (1977)
and Joseph (1976) and the collections edited by Leibovich & Seebass (1974)
and Swinney & Gollub (1981). Related works by Weiland & Withelmsson
(1977) on waves in plasmas and Nayfeh (1973) on perturbation methods
are also of interest to fluid dynamicists.

The great scope, and even greater volume, of recent work on nonlinear
waves and stability pose a daunting task for any student entering the field
and a continuing, time-consuming challenge to all who try to keep abreast
of recent developments. Comprehensive, yet broad, surveys of research in
this area become increasingly difficult to write as the subject expands. But
collections of more narrowly-focused reviews by groups of specialists
often fail to emphasize the many similarities which exist between related
areas; similarities which can reveal fresh insights and generate new ideas.

The underlying theme of the present work is that of wave interactions,
primarily in incompressible fluid dynamics. But similar mathematical
problems arise in a variety of other disciplines, especially plasma physics,
optics, electronics and population dynamics: accordingly, some of the
work cited derives from the latter fields of study.

Many fascinating and unexpected- wave-related phenomena occur in
fluids. For instance, water-wave theory has experienced a revolution in the
last two decades: solutions are now available, for waves modulated in space
as well as time, which exhibit properties as diverse as solitons, side-band
modulations, resonant excitation, higher-order instabilities and wave-
breaking. Recent progress has been no less dramatic in nonlinear hydro-
dynamic stability: the role of mode interactions in the processes leading
towards fully-developed turbulence in shear flows is now fairly well
understood, and the discovery of low-dimensional ‘chaos’ in certain fluid
flows and in corresponding differential equations is of great current
interest. Throughout the history of mathematical analysis, fluid mechanics
has provided a challenge and source of inspiration for new theoretical
developments: there is every mdlcatlon that this Sltuauon will persist for
generations to come.

Chapter 2 is devoted to linear wave interactions, but the remainder of
this work concerns aspects of nonlinearity. The underlying assumptions
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are usually those necessary for development of a weakly nonlinear theory:
that is to say, linear theory is considered to provide a good starting point
in the search for better, higher-order, approximations. However, the
nonlinear evolution equations which result from such approximations are
sometimes amenable to exact solution: when this is so, an account of their
properties is given.

Nonlinear problems are treated in broad categories, on the basis of
mathematical rather than physical similarity. Chapter 3 provides a general
theoretical introduction; then Chapter 4 treats wave-driven mean flows
and waves modified by weak mean flows. Chapter 5 deals with cases of
three-wave resonance driven by nonlinearities which are quadratic in wave
amplitudes; Chapter 6 concerns nonlinear evolution of a single dominant
wave-mode which experiences cubic nonlinearities and Chapter 7 mainly
considers interaction of several (typically three or four) wave-modes
coupled by cubic nonlinearities. Chapter 8 briefly considers local secondary
instabilities and aspects of turbulence. Included in most categories are
prc blems concerning surface waves, internal waves in stratified or rotatin g
fluids and wave-modes in thermal convection and shear flows. Inviscid,
and so in some sense conservative, systems are treated side by side with
dissipative ones, in order to demonstrate similarities and differences.
Typically, the resulting nonlinear evolution equations are soluble analyti-
cally in conservative cases, but have rarely been solved other than
numerically in dissipative ones. Numerical work which attempts to
encompass high-order nonlinearities beyond the range of present analytical
techniques is discussed where appropriate.

The use of non-rigorous, sometimes non-rational, procedures — most
notably series truncation - is a feature of much work of undoubted interest
and value. Unlike Joseph (1976), I have not scrupled to give a fuli account
of the ‘state of the art’: but it must firmly be borne in mind that the
connection between a theoretical model so derived and physicai reality is
often unclear and perhaps less close than the original author’s enthusiasm
led him to believe. It is also true that many of the physical configurations
so readily envisaged by theoreticians can be rather intractable for experi-
mentalists: even the most obvious restriction to channels of finite length,
width and depth immediately causes difficulties! The tendency to make
comparisons between theories and experiments which are not strictly
comparable is natural and widespread. Theories which are rationally
deduced. for some limiting case, have restricted domains of validity which
may not overiap with available experimental evidence : comparisons made
outwith this range of validity are no more raicnal - indeed may be less
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so — than those based on less rigorous theories. Throughout this work, the
existing experimental evidence is discussed.

Mechanical systems normally vibrate when displacements from equilib-
rium are resisted by restoring forces. Examples in fluid mechanics are
sound waves, surface gravity and capillary waves, and internal waves
sustained by density-stratification, uniform rotation or electromagnetic
fields. Such waves may exist in fluid otherwise at rest and they are usually
damped by diffusive processes associated with viscosity, thermal or
electromagnetic conductivity. But doubly or triply diffusive systems are
known to stipport other instabilities, such as *salt fingering’.

Relative motion of parts of the fluid, maintained by moving boundaries
or applied stresses, modifies wave properties and admits new, possibly
unstable, modes. The (Kelvin—Helmholtz) instability of waves at a velocity
discontinuity and the centrifugal (Rayleigh-Taylor) instability of differen-
tially rotating flows were among the first to be succéssfully analysed by
linear theory. In unstable rotating flows, the centrifugal force is analogous
to the destabilizing body force due to buoyancy in fluid layers heatedt from
below: the latter causes convective (Bénard) instability.

Surface tension provides a restoring force on plane surface waves; but
it causes instability of cylindrical columns or jets of liquid. This occurs for
geometrical reasons related to the total curvature of the deformed surface,
and is analogous to certain instabilities of magnetic flux tubes. Variations
in surface tension, due to gradients of temperature or concentration of
adsorbed contaminants, may also enhance or inhibit instabilities.

The linear instability of parallel and nearly-parallel fiows in channels,
boundary layers, unbounded jets and wakes is profoundly influenced by
the presence of one or more “critical layers’ where the local flow velocity
is close to the phase velocity of a wavelike perturbation. When the primary
velocity profile has no inflection point, there are no unstable inviscid
modes. But viscosity plays a dual role: as well as providing dissipation,
it can also admit new unstable modes which continually absorb. energy
from the primary flow at the critical layer. Such viscous instability has
similarities with Landau damping of plasmas.

Density stratification and the presence of boundaries also play dual
roles. A gravitationally-stable density distribution may suppress shear-flow
instability; but it can also admit new modes which may interact linearly
or nonlinearly to give instability. Likewise, a boundary may enhance
viscous dissipation, largely due to the intense oscillatory boundary layer
inits vicinity; but it can also reflect wave energy generated elsewhere within
the flow and so encourage wave growth. “-
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These few examples serve to illustrate the variety and subtlety of
instability mechanisms in fluids. Excellent detailed accounts of linear
stability theory are presently available, which it is pointless to duplicate
here. The existence of linear instability of a particular flow indicates that
this flow cannot normally persist, but will evolve into another type of
motion if given an arbitrary small disturbance. However, it is sometimes
possible to stabilize a flow by eliminating potentially unstable modes: the
party trick of inverting a gauze-covered glass of water is an example, for
the gauze prevents growth of the longer wavelength gravitationally-unstable
modes not already stabilized by surface tension. Of more practical interest
are fecent attempts to suppress boundary-layer instability by artificially
creating a wave with phase such as to ‘cancel’ the spontaneously-growing
mode. Such stabilization by controlled vibration is effective in dynamical
systems with just a few degrees of freedom -~ for instance the inverted
pendulum — but may also induce new parametric instabilities.

If interest is restricted to a finite region of space, say the surface of an .
aeroplane wing or turbine blade, the mere existence of instability is not
the only important aspect. One needs to know whether a disturbance of
certain size initiated at some location, say part of the leading edge, will
attain significant amplitudes within the region of interest; and, if so, where
the greatest amplitudes will occur. Hence, consideration of spatial, as well
as temporal, growth is important.

Though linear theory may successfully yield criteria for onset of
instability to small disturbances (and sometimes may not!) a finite
disturbance can assume a form remote from that of the most unstable
linear mode: It may happen that nonlinear effects stabilize the disturbance
at some small fixed amplitude and that its form broadly resembles the single
linear mode from which it evolved.

An instance of this is the toroidal-vortex motion in Taylor—Couette flow
between concentric rotating cylinders, at Taylor numbers marginally above
thecritical one for onset of linearinstability. Otherexamples are near-critical
Bénard convection and wind-generated ripples in rather shallow water at
just above the critical wind speed. In all such cases, there is a stable solution
of the nonlinear equations in the immediate vicinity of the critical
conditions for onset of linear instability: this solution bifurcates at the
critical point from the trivial zero-amplitude solution.

But, when nonlinear terms have a destabilizing influence, there is no
stable small-amplitude solution near the critical point and large enough
disturbances typically evolve to more complex states. As one moves further
from the linear critical conditions, even those constant-amplitude solutions
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which were stable may lose their stability and support spontaneous growth
of other modes. In a similar way, water waves; which are neutraily-stable
according to linear theory, exhibit nonlinear instability and modulation.

When a flow becomes very irregular, it is normally described as being
turbulent. In fully-developed turbulence, there is no discernible regularity
of spatial or temporal structure: Fourier spectra in both space and time
are then continuous and broadband, without distinct peaks. When not
fully developed, turbulence may be intermittent, confined to localized
regions which propagate within an otherwise laminar (though disturbed)
flow. A weaker sort of turbulence is found in certain flows which retain
a dominant periodic structure amid the broadband ‘noise’: an example
is Taylor-Couette flow at very large Taylor numbers, where spanally-
periodic toroidal vortices persist.

Still weaker apparently chaotic motions may occur due to the mutual
interaction of a small number of modes: though the temporal structure
may be broadband, usually with a few dominant peaks, the spatial
structure remains highly organized. Behaviour of this kind, indicative of
a ‘strange attractor’ in the solution space of the governing equations, has
deservedly received much recent attention. Both Bénard convection and
Taylor—Couette flow can exhibit such behaviour. However, frequent use
- of the word ‘turbulence’ in this connection seems misplaced: although the
motion is certainly ‘chaotic’ in time, it remains highly organized in space.

Sometimes, instability and subsequent nonlinear growth have no
connection whatever with turbulence. The capillary instability of liquid jets
leads to breaking into discrete droplets, usually of regular size; other
interfacial instabilities also lead to droplet formation and entrainment.
Low Reynolds-number flow of thin liquid films, down an incline under
gravity or horizontally under an airflow, may support large-amplitude but
still periodic waves or may break up to form dry patches.

Throughout most of this work, the governing equations are the incom-
pressible Navier-Stokes equations,

@/at+u-Viu=—ps1Up+f+4+v Vi, }

1.1a,b
V-u=0. (1.1a,b)

Here, u(x, ) and p(x, ) respectively denote the velocity vector and pressure
at each point x and instant 7 and f is a body force per unit mass. The fluid
density p, is taken to be constant, though this constant may differ in
different fluid layers; also, continuous changes in density, assumed small
compared with p,, may be incorporated into the gravitational body force
(the so-called Boussinesq approximation). The kinematic viscosity v is also
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assumed constant and is related to the dynamic viscosity coefficient g by
v = u/p,. Equation (1.1a) yields three scalar momentum equations, one
for each co-ordinate direction, and (1.1b) is the continuity equation.
Equations (1.1) are frequently expressed in dimensionless form, relative
to characteristic scales of mass, length and time. If the latter are defined
by a length L, velocity ¥ and the density p,, dimensionless counterpa;(gi '
of (1.1) are « N

B (a/aT+U'Vl)U=-V1P+F+R-1V§U’}
Vl°U = 0,
with the new variables related to the old by U=u/V. P =p/p, V?,

F =f{L/V* The new space co-ordinates, if Cartesian, and dimensionless
time T are respectively

(X,Y,Z)=(x/L,y/L,z/L), V,=(/0X,0/8Y,8/3Z), T =1V/L.

(1.1a,by

Viscosity is now represented by the Reynolds number R = VL/v. In the
following chapters, lower-case symbols are sometimes used t» denote these
dimensionless variables: there should be no risk of confusion.

The choice of scales for non-dimensionalization is to some extent
arbitrary, but strong conventions exist. For example, plane Poiseuille flow
through a plane channel is usually characterized by the half-width of the
channel and the maximum flow velocity at mid-channel, yielding the
dimensionless velogity prefile

T

UZ)=1-2¢ (-i<z<. (1.2)

Similarly, boundary-layer flows may be non-dimensionalized relative to
the (local) free-stream velocity and displacement thickness.

When there occur variations of temperature 6, and so of density, {1.1)
must be supplemented by the thermal equation and by an equation of state
expressing variation of density with 6. In the Boussinesq approximation,
the former becomes :

(8/31+u-V)8 = x V0 ' (1.3)

where « is thermal diffusivity, and consequent density variations from Po
are considered sufficiently small to be retained only in the gravitational
body force pg per unit volume. The dimensionless counterpart of (1.3) has
x replaced by Pr-R! where Pr = v/« is the Prandtl number.

A steady state u = uy(x), p = py(x) which satisfies (1.1) may experience
a perturbation to

u=u,+ew'(x,?), p=p,+ep'(x,1),
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where ¢ is a small parameter characteristic of the iuitial magnitude of the
perturbation. From (1.1),

@/t +1- V)W + W V) u, = —pgt Vp' + £ +1 Vo' —e(u’ - V),
T -0 (1.4a,b)
=0, -

where ef’ denotes any perturbation of the body force from its steady-state
value. When the disturbance is sufficiently small, it may be justifiable to
neglect the term e(w’- V)u’ in (1.4a): if so, the resuitant set of equations
for the disturbance is linear and may be solved to find a first approximation
to the true perturbed solution. Weakly-nonlinear theory then builds oi this
by constructing the solution as a series in ascending powers of €.

When viscosity is negligible, equations (1.1) reduce to Euler’s equations.
If the body force f is conservative (say f = — VQ), these greatly simplify
for irrotaticnal flows: for then the vorticity V x u remains zero at all times
if zero initially. Accordingly, the velocity is expressible as u = V¢ in terms
of a scalar velocity potential ¢(x, #) and (1.1b) immediately yields Laplace’s
equation. Integration of (1.1a) aiong any line element within the fiuid gives

3P/t +p/pe+Q+HVe) = A1), }

Vig = 0 (1.5a,b)

and the arbitrary function f(¢) may be absorbed into ¢ without loss. Here,
the nonlinear Euler’s equations have reduced exactly to the linear Laplace’s
equation, without restriction on any disturbance amplitude, and p is givén
directly by (1.52) once ¢ is known. However, in many cases to be discussed,
the boundary conditions remain nonlinear and so solution is not
straightforward.

The physical condition at solid boundaries is that the velocity of the fluid
immediately adjacent to the boundary equals that of the boundary: i.e.
u(x, 1) = u,(x, t) on the boundary surface B(x, ) = 0. Here, u, denotes the
velocity of material particles of the boundary. The boundary itself must
satisfy a kinematic condition connecting w, with the boundary position
B = 0. However, for inviscid flows, the ‘no-slip® boundary condition must
be discarded and only the velocity component normal to the boundary is
prescribed: i.e. (W—uy,)-fi = 0 where & is the unit normal to the boundary.

At free surfaces and fluid interfaces, thére are both kinematic and
dynamical boundary conditions. Continuity of “velocity (or, for inviscid
flows, the normal component of velocity) across interfaces is required ; also
the location of the interface is related to the velocity of particles comprising
it by a kinematic condition. In addition, dynamical boundary conditions
express the force balance at the intefface. In Cartesian form, the stress



