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Preface

This is the second edition of the text “Bioreaction Engineering Principles” by Jens Nielsen and
John Villadsen, originally published in 1994 by Plenum Press (now part of Kluwer).

Time runs fast in Biotechnology, and when Kluwer Plenum stopped reprinting the first edition
and asked us to make a second, revised edition we happily accepted. A text on bioreactions
written in the early 1990’s will not reflect the enormous development of experimental as well as
theoretical aspects of cellular reactions during the past decade.

In the preface to the first edition we admitted to be newcomers in the field. One of us (JV) has
had 10 more years of job training in biotechnology, and the younger author (JN) has now
received international recognition for his work with the hottest topics of “modermn”
biotechnology. Furthermore we are happy to have induced Gunnar Lidén, professor of chemical
reaction engineering at our sister university in Lund, Sweden to join us as co-author of the
second edition. His contribution, especially on the chemical engineering aspects of “real”
bioreactors has been of the greatest value.

Chapter 8 of the present edition is largely unchanged from the first edition. We wish to thank
professor Martin Hjortso from LSU for his substantial help with this chapter.

As was the case for the first edition numerous people helped us by carefully reviewing individual
chapters. Professor Lars K Nielsen of University of Queensland was a constant sparring partner,
both in Australia and lately as a visiting professor at DTU. The help of Dr. Mats Akesson and of
our PhD students, in particular Mikkel Nordkvist, Thomas Grotkjer, Jochen Forster and Morten
Skov Hansen is also gratefully acknowledged. MSc student Rebecca Munk Vejborg was of great
help in her careful editing of the final version of the manuscript.

All three authors are chemical engineers by education, and we followed in the footsteps of other
chemical engineers who “converted” to biotechnology, but retained their passion for a quantitative
treatment of problems from the physical world. One of the greatest innovators of biochemical
engineering, professor James E. Bailey was also a chemical engineer by education. We wish to
dedicate this book to the memory of this eminent scientist, who was a close colleague and a friend
(of the senior author for more than 35 years), and whose work is admired by all three of us. If the
pages of this book could inspire some students in the way Jay Bailey inspired hundreds of chemical
engineering and biochemical engineering students we could hope for no better reward.

John Villadsen and Jens Nielsen Gunnar Lidén.
BioCentrum-DTU Kemicentrum, Lund University
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Bioreaction Engineering:
From Bioprocess Design to Systems Biology

Biotechnology is a key factor in the development and implementation of processes for the
manufacture of new food products, animal feedstuffs, pharmaceuticals, and a number of speciality
products through the application of microbiology, enzyme technology, and engineering disciplines
such as reaction engineering and separation technology. With the introduction of the so-called
"new" biotechnologies since 1970, directed manipulation of the cell's genetic machinery through
recombinant DNA techniques and cell fusion became possible. This has fundamentally expanded
the potential for biological systems to make important biological molecules that cannot be produced
by other means. Existing industrial organisms can be systematically altered to produce useful
products in cost-efficient and environmentally acceptable ways. Thus, progress in genetic
engineering has led to directed genetic changes through recombinant DNA technology, which
allows a far more rational approach to strain improvement than by classical methods. This is
referred to as metabolic engineering (Bailey, 1991), and in recent years, metabolic engineering
has been applied for improvement of many different microbial fermentation processes
(Ostergaard et al., 2000; Nielsen, 2001). Initially, metabolic engineering was simply the
technological manifestation of molecular biology, but with the rapid development in new
analytical techniques, in cloning techniques, and in theoretical tools for analysis of biological
data, it has become possible to rapidly introduce directed genetic changes and subsequently
analyze the consequences of the introduced changes at the cellular level. Often the analysis will
point towards an additional genetic change that may be required to further improve the cellular
performance, and metabolic engineering therefore involves a cyclic operation with a close
integration between analysis of the cellular function and genetic engineering.

The pervasive influence that biotechnology is bound to have on everyday life in the 21st century is
recognized by scientists, industrialists, and politicians in industrialized countries and certainly also
in the less industrially developed countries of the world, where biotechnology will lead to
revolutionary changes in traditional agricultural economies. In order to reap the benefits of
development in biology there is, however, an urgent need for industrial microbiologists with
experience in solving quantitative problems, particularly as applied to industrial bioreactors. Such
persons have traditionally been referred to as biochemical engineers or bioprocess engineers. They
should ideally combine a generalist's knowledge of the major topics in molecular biology,
microbial physiology, and process engineering with an expert's insight into one particular field.

1



2 Chapter 1

Traditionally biochemical engineers had an important function in the design and scale up of
bioprocesses. Today they are heavily involved also in the very early design phase of a new process,
as it has become of utmost importance to apply an integrated process design wherein the
prospective production organism is made fit for large scale operation even at the early stages of
laboratory strain development. Thus, biochemical engineers have been very active in the rapid
progress of metabolic engineering. Teams of engineers and biologists will be responsible for the
implementation of an integrated approach to process design. It is therefore important that main
stream biologists obtain some insight into quantitative analysis of cellular function and bioreactor
operation, and that biochemical engineers continue to learn more about fundamental biological
processes.

Besides their role in process design and in metabolic engineering, biochemical engineers must also
play an increasing part in fundamental biological research. The genome of a large number of
organisms has been completely sequenced, and it has become a major research goal both to assign
function to all genes in the genome, referred to as functional genomics, and to understand how all
the components within the cellular system interact. This can only be done through the use of
complex mathematical models, and this field is referred to as systems biology (see Fig. 1.1).

=
[M ‘ Evaluwo; of model '4-»
™~ ((system rconstructea |

Fluxomics

Figure 1.1 Schematic representation of systems biology.

Based on empirical data and knowledge of cellular function a mathematical model is proposed. The
model is used to simulate the overall cell function, and model simulations are compared with
experimental data. Experimental data may be obtained from: 1) Genomics; information about the
genomic sequence; 2) Transcriptomics; data on the expression of all genes obtained by measurement of
the complete mRNA pool using DNA arrays; 3) Proteomics; data on all available proteins in the cell
obtained by 2D-gel electrophoresis or protein chips; 4) Metabolomics; data on the metabolite profiles
inside the cells are obtained using different analytical techniques; and 5) Fluxomics; fluxes through all
the cellular reactions are quantified. If there is a good fit between experimental data and model
simulations the model is likely to be a good representation of the biological system, which can therefore
be reconstructed from its essential parts. A poor fit shows that the model needs to be revised, and often
the discrepancy between model simulations and the experimental data will point to where the model
needs to be revised [Adapted from Nielsen and Olsson (2002)).



Bioreaction Engineering: From Bioprocess Design to Systems Biology 3

Table 1.1 Definition of research areas where biochemical engineers play an important role

Term Definition

Bioprocess design The overall design of a bioprocess. This involves both design of the
equipment to be used in the process and quantitative evaluation of how
the process is to be operated most efficiently. A key element in scale up of
processes from laboratory scale to industrial scale.

Metabolic engineering The use of directed genetic modification to improve the properties of a
given cell, e.g. improved yield or productivity, expanded substrate range,
and production of novel products. Quantitative analysis of cellular
function plays an important role in this field.

Functional genomics The qualitative assignment of function to open reading frames (ORFs).
This includes assignment of function to ORFs that have been identified
but have no known function as well as assignment of additional functions
to ORFs with already assigned functions. With the interaction of many
different processes it is necessary to consider interactions between the
many different components, and this may require quantitative analysis

Systems biology Description of overall cell function through a quantitative study of the
interaction between all the individual components in the system (the cell),
e.g. gene transcription, translation, protein-protein interaction, enzyme
catalysis of biochemical reactions, and receptor-metabolite interaction.
With a detailed description of the individual molecular events it is also
possible to consider cell-cell interactions, and hereby whole cultures can
be quantitatively described.

In the future it is expected that the distance will be very short between fundamental discoveries and
process design, and biochemical engineers will play an important role in the different research
fields mentioned above. Table 1.1 gives our definition of these different areas.

1.1 The Structure of the Book

The present text has been named Bioreaction Engineering Principles, and it is the second edition of
a textbook that was first published in 1994. The text has been extensively rewritten and many new
topics are included. The goal is the same as in the original text: To provide students and industrial
researchers with some of the tools needed to analyze, and by analysis to improve the outcome of a
bioreaction process. The book can by no means claim to present the desired integrated view of the
whole bioprocess from selection of the strain to the downstream processing and further to the final
marketable product (separation processes are entirely absent from the text). Qur focus is on the
central unit of the bioprocess, the bioreactor and the processes that occur in the reactor. Basically a
bioreaction can be divided into two parts: operation of the cell factory and the interaction of the cell
factories with each other and the environment imposed via operation of the bioreactor. With the



4 Chapter 1

above mentioned developments in metabolic engineering and systems biology a fundamental
understanding of the cell factory, i.e. how the cells function at different environmental conditions,
has become even more important, not only for design of bioreactions but also to gain detailed
insight into cellular function. Whether one wants to improve a bioprocess or to understand cellular
function at a fundamental level the tools are to a large extent the same. However, as will be
discussed in Chapter 7 the structure of the model used to describe cellular function depends on the
purpose of the study.

What the text does — hopefully in a useful manner - is to integrate the concepts of mathematical
modeling on reasonably general systems with some of the fundamental aspects of microbial
physiology. The cell is the ultimate reactor, and everything that is going to come out of this reactor
has to pass the boundary between the cell and the environment. But what happens inside the cell, in
the biotic phase, is intimately coupled with the conditions in the environment, the abiotic phase.
Therefore the coupling between cell and environment must be given a very serious treatment,
although much idealization is necessary in order to obtain a model of reasonable complexity that
can still be used to study certain general features of bioreactions. The real bioreaction system is an
immensely complicated agglomerate of three phases — gas, liquid, and solid — with concentration
gradients and time constants of greatly different magnitudes. This system is beyond the scope of
any textbook; it is in fact hardly touched upon in front-line research papers. But the individual steps
of a bioreaction, transport to or from the cells, and mixing in a vessel can be treated and will be
illustrated with numerous examples, most of which are simple enough to be solved without
recourse to a computer (and therefore perhaps better suited to impart the understanding of the
underlying mechanisms).

The intended target group for this textbook is students who have studied both natural sciences and
engineering sciences. This includes most students following a chemical engineering curriculum.
Some knowledge of biology will be advantageous, but not mandatory for reading the book. The
book divides the topic into several different themes, as illustrated in Fig. 1.2. It is of little use to
investigate the kinetics of bioreactions without a certain appreciation of the biochemistry of living
organisms. The ingestion of substrate components from the abiotic medium and the fate of a
substrate as it is being converted through metabolic pathways must be known, and the widely
different product distribution under varying environmental conditions must be recognized. Most
chemical engineering students and all microbiologists and biochemists have a working knowledge
of the major pathways of microorganisms. Still, a brief summary of the subject is given in Chapter
2, which at the same time gives an introduction to design of biotech processes. A cursory study of
the many examples dispersed throughout the book may give the impression that Escherichia coli,
Saccharomyces cerevisiae, lactic acid bacteria, and certain filamentous fungi are our favored
microbial species, but it is important to emphasize that the concepts described in this textbook are
equally well suited to analyze also other cellular systems, i.e. other microbes, cell cultures, plants,
animal cells and even human cells.

It is often painful to analyze kinetic data from industrial (or, indeed, academic) research where the
mass balances do not even approximately close. A microorganism grows and produces metabolites
from substrates. Since all the input carbon and nitrogen must be found in one of the effluents from
the bioreactor, the biomass, the remaining substrates or the metabolic products, it appears to be



