

Biocomposites: Design and Mechanical Performance

Edited by Manjusri Misra, Jitendra K. Pandey and Amar K. Mohanty

Woodhead Publishing Series in Composites Science and Engineering: Number 61

Biocomposites: Design and Mechanical Performance

Edited by

Manjusri Misra Jitendra K. Pandey Amar K. Moha<u>nty</u>

Woodhead Publishing is an imprint of Elsevier 80 High Street, Sawston, Cambridge, CB22 3HJ, UK 225 Wyman Street, Waltham, MA 02451, USA Langford Lane, Kidlington, OX5 1GB, UK

Copyright © 2015 Elsevier Ltd. All rights reserved

No part of this publication may be reproduced or transmitted in any form or by any means, electronic or mechanical, including photocopying, recording, or any information storage and retrieval system, without permission in writing from the publisher. Details on how to seek permission, further information about the Publisher's permissions policies and our arrangements with organizations such as the Copyright Clearance Center and the Copyright Licensing Agency, can be found at our website: www.elsevier.com/permissions.

This book and the individual contributions contained in it are protected under copyright by the Publisher (other than as may be noted herein).

Notices

Knowledge and best practice in this field are constantly changing. As new research and experience broaden our understanding, changes in research methods, professional practices, or medical treatment may become necessary.

Practitioners and researchers must always rely on their own experience and knowledge in evaluating and using any information, methods, compounds, or experiments described herein. In using such information or methods they should be mindful of their own safety and the safety of others, including parties for whom they have a professional responsibility.

To the fullest extent of the law, neither the Publisher nor the authors, contributors, or editors, assume any liability for any injury and/or damage to persons or property as a matter of products liability, negligence or otherwise, or from any use or operation of any methods, products, instructions, or ideas contained in the material herein.

ISBN: 978-1-78242-373-7 (print) ISBN: 978-1-78242-394-2 (online)

British Library Cataloguing-in-Publication Data

A catalogue record for this book is available from the British Library

Library of Congress Control Number: 2015935091

For information on all Woodhead Publishing publications visit our website at http://store.elsevier.com/

Printed in the United States of America

Biocomposites: Design and Mechanical Performance

Related titles

Biofiber reinforcement in composite materials (ISBN 978-1-78242-122-1)

Natural fibre composites: Materials, processes and properties (ISBN 978-0-85709-524-4)

 $\label{lem:composites:types} Environmentally\ friendly\ polymer\ nanocomposites:\ Types,\ processing\ and\ properties\ (ISBN\ 978-0-85709-777-4)$

Contributors

- H.P.S. Abdul Khalil Universiti Sains Malaysia, Penang, Malaysia
- **D. Acierno** Dipartimento di Ingegneria Chimica, dei Materiali e della Produzione Industriale, Università di Napoli Federico II, Naples, Italy
- S. Aprilia Syiah Kuala University, Banda Aceh, Indonesia
- M.I. Aranguren Institute of Research in Materials Science and Technology (INTEMA), National University of Mar del Plata, Mar del Plata, Argentina
- A.A. Astimar Malaysian Palm Oil Board, Kuala Lumpur, Malaysia
- L. Avérous Université de Strasbourg, Strasbourg, France
- C. Baley Université de Bretagne Sud, Lorient Cedex, France
- B.I. Biddappa Clemson University, Greenville, SC, USA
- A. Bourmaud Université de Bretagne Sud, Lorient Cedex, France
- A. Cloutier Université Laval, Quebec City, QC, Canada
- R.N. Darie-Nită "P. Poni" Institute of Macromolecular Chemistry, Iasi, Romania
- Y. Davoudpour Universiti Sains Malaysia, Penang, Malaysia
- **H.N. Dhakal** University of Portsmouth, Portsmouth, UK
- **R. Dungani** Universiti Sains Malaysia, Penang, Malaysia, and School of Life Sciences and Technology, Institut Teknologi Bandung, Bandung, Indonesia
- R.F. El-Hajjar University of Wisconsin, Milwaukee, WI, USA
- **G. Filippone** Dipartimento di Ingegneria Chimica, dei Materiali e della Produzione Industriale, Università di Napoli Federico II, Naples, Italy
- P.J. Halley The University of Queensland, Brisbane, QLD, Australia

- M.S. Hossain Universiti Sains Malaysia, Penang, Malaysia
- L. Jiang North Dakota State University, Fargo, ND, USA
- A. Kaboorani Université Laval, Québec, QC, Canada
- A.R. Kakroodi Université Laval, Quebec City, QC, Canada
- Y. Kazemi Université Laval, Quebec City, QC, Canada
- A.B. Kousaalya Clemson University, Greenville, SC, USA
- A. Le Duigou Université de Bretagne Sud, Lorient Cedex, France
- **H.H. León-Santiesteban** Department of Biotechnology, Universidad Autónoma Metropolitana-Iztapalapa, Mexico, Mexico, D.F.
- P. Liu Guangzhou University, Guangzhou, China
- **N.E. Marcovich** Institute of Research in Materials Science and Technology (INTEMA), National University of Mar del Plata, Mar del Plata, Argentina
- T.H. Mekonnen University of Guelph, Guelph, ON, Canada
- M. Misra University of Guelph, Guelph, ON, Canada
- **A.K. Mohanty** University of Guelph, Guelph, ON, Canada
- M.A. Mosiewicki Institute of Research in Materials Science and Technology (INTEMA), National University of Mar del Plata, Mar del Plata, Argentina
- R. Muthuraj University of Guelph, Guelph, ON, Canada
- V. Nagarajan University of Guelph, Guelph, ON, Canada
- Z. Nahrul Hayawin Malaysian Palm Oil Board, Kuala Lumpur, Malaysia
- J.K. Pandey University of Petroleum and Energy Studies, Dehradun, India
- E. Părpăriță "P. Poni" Institute of Macromolecular Chemistry, Iasi, Romania
- S. Pilla Clemson University, Greenville, SC, USA
- I.I. Qamhia University of Wisconsin, Milwaukee, WI, USA

Contributors xiii

- S. Rai Clemson University, Greenville, SC, USA
- B. Riedl Université Laval, Québec, QC, Canada
- D. Rodrigue Université Laval, Quebec City, QC, Canada
- P. Russo Institute for Polymers, Composites and Biomaterials, National Research Council, Pozzuoli (Naples), Italy
- N.L.M. Suraya Universiti Sains Malaysia, Penang, Malaysia
- E. Ten Washington State University, Pullman, WA, USA
- **A. Tomasini** Department of Biotechnology, Universidad Autónoma Metropolitana-Iztapalapa, Mexico, Mexico, D.F.
- L.-S. Turng University of Wisconsin-Madison, Madison, WI, USA
- C. Vasile "P. Poni" Institute of Macromolecular Chemistry, Iasi, Romania
- M.P. Wolcott Washington State University, Pullman, WA, USA
- F. Xie The University of Queensland, Brisbane, QLD, Australia
- J. Zhang Washington State University, Pullman, WA, USA
- H. Zhao Shandong University, Jinan, China

Woodhead Publishing Series in Composites Science and Engineering

1 Thermoplastic aromatic polymer composites

F. N. Cogswell

2 Design and manufacture of composite structures

G. C. Eckold

3 Handbook of polymer composites for engineers

Edited by L. C. Hollaway

4 Optimisation of composite structures design

A. Miravete

5 Short-fibre polymer composites

Edited by S. K. De and J. R. White

6 Flow-induced alignment in composite materials

Edited by T. D. Papthanasiou and D. C. Guell

7 Thermoset resins for composites

Compiled by Technolex

8 Microstructural characterisation of fibre-reinforced composites

Edited by J. Summerscales

9 Composite materials

F. L. Matthews and R. D. Rawlings

10 3-D textile reinforcements in composite materials

Edited by A. Miravete

11 Pultrusion for engineers

Edited by T. Starr

12 Impact behaviour of fibre-reinforced composite materials and structures

Edited by S. R. Reid and G. Zhou

13 Finite element modelling of composite materials and structures

F. L. Matthews, G. A. O. Davies, D. Hitchings and C. Soutis

14 Mechanical testing of advanced fibre composites

Edited by G. M. Hodgkinson

15 Integrated design and manufacture using fibre-reinforced polymeric composites Edited by M. J. Owen and I. A. Jones

16 Fatigue in composites

Edited by B. Harris

17 Green composites

Edited by C. Baillie

18 Multi-scale modelling of composite material systems

Edited by C. Soutis and P. W. R. Beaumont

19 Lightweight ballistic composites

Edited by A. Bhatnagar

20 Polymer nanocomposites

Y.-W. Mai and Z.-Z. Yu

21 Properties and performance of natural-fibre composite

Edited by K. Pickering

22 Ageing of composites

Edited by R. Martin

23 Tribology of natural fiber polymer composites

N. Chand and M. Fahim

24 Wood-polymer composites

Edited by K. O. Niska and M. Sain

25 Delamination behaviour of composites

Edited by S. Sridharan

26 Science and engineering of short fibre reinforced polymer composites

S-Y. Fu, B. Lauke and Y-M. Mai

27 Failure analysis and fractography of polymer composites

E. S. Greenhalgh

28 Management, recycling and reuse of waste composites

Edited by V. Goodship

29 Materials, design and manufacturing for lightweight vehicles

Edited by P. K. Mallick

30 Fatigue life prediction of composites and composite structures

Edited by A. P. Vassilopoulos

31 Physical properties and applications of polymer nanocomposites

Edited by S. C. Tjong and Y.-W. Mai

32 Creep and fatigue in polymer matrix composites

Edited by R. M. Guedes

33 Interface engineering of natural fibre composites for maximum performance

Edited by N. E. Zafeiropoulos

34 Polymer-carbon nanotube composites

Edited by T. McNally and P. Pötschke

35 Non-crimp fabric composites: Manufacturing, properties and applications

Edited by S. V. Lomov

36 Composite reinforcements for optimum performance

Edited by P. Boisse

37 Polymer matrix composites and technology

R. Wang, S. Zeng and Y. Zeng

38 Composite joints and connections

Edited by P. Camanho and L. Tong

39 Machining technology for composite materials

Edited by H. Hocheng

40 Failure mechanisms in polymer matrix composites

Edited by P. Robinson, E. S. Greenhalgh and S. Pinho

41 Advances in polymer nanocomposites: Types and applications

Edited by F. Gao

42 Manufacturing techniques for polymer matrix composites (PMCs)

Edited by S. Advani and K.-T. Hsiao

43 Non-destructive evaluation (NDE) of polymer matrix composites: Techniques and applications

Edited by V. M. Karbhari

44 Environmentally friendly polymer nanocomposites: Types, processing and properties S. S. Ray

45 Advances in ceramic matrix composites

Edited by I. M. Low

46 Ceramic nanocomposites

Edited by R. Banerjee and I. Manna

47 Natural fibre composites: Materials, processes and properties

Edited by A. Hodzic and R. Shanks

48 Residual stresses in composite materials

Edited by M. Shokrieh

49 Health and environmental safety of nanomaterials: Polymer nanocomposites and other materials containing nanoparticles

Edited by J. Njuguna, K. Pielichowski and H. Zhu

50 Polymer composites in the aerospace industry

Edited by P. E. Irving and C. Soutis

51 Biofiber reinforcement in composite materials

Edited by O. Faruk and M. Sain

52 Fatigue and fracture of adhesively-bonded composite joints: Behaviour, simulation and modelling

Edited by A. P. Vassilopoulos

53 Fatigue of textile composites

Edited by V. Carvelli and S. V. Lomov

54 Wood composites

Edited by M. P. Ansell

55 Toughening mechanisms in composite materials

Edited by O. Oin and J. Ye

56 Advances in composites manufacturing and process design

Edited by P. Boisse

57 Structural integrity and durability of advanced composites: Innovative modelling methods and intelligent design

Edited by P. W. R. Beaumont, C. Soutis and A. Hodzic

58 Recent advances in smart self-healing polymers and composites

Edited by G. Li and H. Meng

59 Manufacturing of nanocomposites with engineering plastics

Edited by V. Mittal

60 Fillers and reinforcements for advanced nanocomposites

Edited by Y. Dong, R. Umer and A. Kin-Tak Lau

61 Biocomposites: Design and mechanical performance

Edited by M. Misra, J. K. Pandey and A. K. Mohanty

62 Numerical modelling of failure in advanced composite materials

Edited by P.P. Camanho and S. R. Hallett

Preface

The well-known Green Revolution in the late 1960s was a groundbreaking agricultural initiative that resulted in high-yield crops, thereby satisfying the food demand of a growing population. History repeated in the 1990s, when agriculture—with other renewable resources—became the base for the growing biobased economy. In the developing bioeconomy era, the necessity for sustainable development has drawn a renewed interest for natural fiber composites in the manufacturing sector. Biocomposites and green-composites are gaining importance for their application in eco-friendly consumer products, rigid packaging, automotive parts, and housing structures.

The environmental awareness of our society has reached its highest level in decades. Most segments of society, particularly the burgeoning younger demographics, now realize the importance of alternative resources substituting the non-renewable and fast-depleting petroleum resources in different areas of application, such as energy, chemicals, and materials. The ever-increasing concern over climate change, growing greenhouse gas (GHG) emission, along with the growing population has necessitated the reinvention of sustainable development in the plastic-based manufacturing industries. Sustainable development can be realized with the overlap of its three foundational platforms: economic, social, and environmental benefits. Currently, we have to plan, design, and formulate new, alternative options from resources that are renewable, within acceptable timeframes.

Today, petroleum is the main feedstock for the production of polymeric materials. Almost 99% of the total global plastic production is from petroleum resources. Synthetic glass fiber has occupied the predominant place in the multi-billion-dollar composite industry. The long-standing R&D output in the area of natural fiber composites has created enough scientific data showing that several natural fibers can substitute certain types of glass fiber (like E-glass) in specific composite uses—with the added advantage of eco-friendliness. Many natural fibers are less expensive, are about half the density—thus lighter, have higher specific strength, require comparatively less energy to produce, have superior sound abatement features, and are biodegradable—as compared to E-glass fibers.

The material being lightweight, along with its competitive cost and performance attributes, is a driving force behind the use of natural fiber composites in automotive parts. The agro-based natural fibers, like flax, jute, kenaf, industrial hemp, sisal, and henequen, have been researched extensively in the biobased composites field. This class of long fibers has advantages in engineering fabric-based structural composites, alongside their use in injection molded short fiber composites. Forest resourced wood fiber has been used widely in wood-plastic composites. The purpose-grown perennial grasses, for example, switch grass and miscanthus, as well as agro-residues such as

XX Preface

wheat and rice straws, corn stovers, soy stalks, etc., demonstrate strong potential in injection molded composites application. For the manufacturing sector, the constant supply chain of natural fibers, and the logistics of their collection and transportation are some of the challenges hindering the fibers' large-scale implementation.

The biobased composite materials from petro-based plastics and natural fibers have achieved some commercial success. The most used biocomposites are natural fiber reinforced polypropylene, under the thermoplastic composites category, and natural fiber reinforced unsaturated polyester resin, under the thermoset class. New composite materials from plant derived natural fibers and crop derived bioplastics are gaining more and more importance with the growing environmental need to have truly green composites. The hybrid biocomposites, derived from mixed sources, for example, both from bio-resources and petro-resources, are gaining more market and commercial attraction because of their cost-performance attributes. At present, society is ready to accept biobased alternatives; however, not with cost and performance penalties. For these materials, scientists, in collaboration with chemists, physicists, mechanical and chemical engineers, are seeking ways to provide knowledge, and to offer technologies that can overcome the obstacles. Policy makers are the first element needed to move this plan forward. Governmental mandates are necessary to promote the production and utilization of bio-products in different industrial sectors.

With the present book, *Biocomposites: Design and Mechanical Performance*, we hope to contribute to the awareness of our society about the environment; provide a scientific approach to overcome obstacles with substitutes for petro-based polymeric materials; and encourage the policy makers to keep driving the industry sectors, and academic research, towards a sustainable future. This book consists of 17 chapters written by leading researchers. It is a single source of information about a wide range of bioplastics and biocomposites.

We would like to acknowledge all authors who contributed, as well as the Woodhead Publishing staff who helped us immensely in making this book possible.

Finally, we would like to dedicate this book to the numerous natural fiber growers, the stalwarts of the biomass producing industry, biopolymer compounders and equipment manufacturers, policy makers, those looking for value-added solutions to co-product streams of the bioproducts industry, and to all those looking to create a sustainable future for mankind in an environmentally conscious society.

Manjusri Misra Jitendra K. Pandey Amar K. Mohanty

•

Foreword

Environmental concerns associated with the ever-expanding use of petro-based materials continue to grow, along with the rapid acceleration in global warming. Faster development of sustainable materials and green processes for mainstream markets is critically important for tackling both these issues. This is particularly true for composites and other petro-based products that combine two dissimilar materials, because, as of now, no environmentally friendly end-of-life solutions are available for them. Unfortunately, most composites end up in landfills. Replacing petro-based materials with their bio-based counterparts has great potential to limit and even reduce the accumulation of new fossil carbon in the atmosphere. It is no wonder that, over the past few years, an increasing number of scientific publications, reports, patents, international conferences, and symposia have been covering the exploration, development, and use of renewable resource- or plant-based materials as alternatives to petro-based materials in broad and diverse applications. Companies with long-term vision are already moving away from petro-based materials and chemicals, and at the same time, governments are enacting new regulations to increase the use of bio-based products, for a better tomorrow.

Natural fiber composites, developed from traditional and engineering plastics, are being widely researched, and these materials have begun to find their way into diverse industrial and sports applications. On the other hand, researchers are increasingly exploring the design and engineering of *green* biocomposites derived from bio-based plastics and natural fibers, because most of these products tend to be environmentally benign. More and more research initiatives are also aimed at realizing the full potential of such bio-based and biodegradable plastics and composite materials. Improvements in the performance, efficiency, durability, and cost effectiveness of these materials, through further research, can improve their competitiveness in the current market. Current bio-based materials research is focused on developing and evaluating a rich array of bioproducts. As we make an effort to substitute the traditional materials with bio-based products, we must learn to better assess these sustainable materials to ensure their quality and long-term performance, while enhancing their functionalities.

The success of these materials in every possible field of application requires a full understanding of the material properties and manufacturing technologies. For this reason, this book focuses on detailing the design and mechanical performance of biocomposites. The chapters in this book provide a comprehensive scientific and technological appraisal of the current research and perspectives related to biocomposites made from traditional and engineering plastics, bio-based plastics, and their blends

reinforced with natural fibers. This book should appeal to a broad range of research scientists, scholars, academics, industrialists, and government officials across various related fields.

Professor Anil Netravali Jean and Douglas McLean Professor in Fiber Science and Apparel Design Cornell University, USA