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PREFACE

The control of complex mechanical systems often falls between the cracks of engi-
neering curricula, but the topic occupies an extremely important place in the world
of industrial control. Most courses and professional reference material cover the
details of embedded control of very small systems using microcontrollers, as well
as details of electronics and control theory. In contrast, this book addresses issues
associated with the design of control software for mechanical systems consisting of
significant numbers of sensors and actuators - systems whose activities must be
coordinated. These systems often include a computer-based operator interface and
internal as well as external network connections.

The term “mechanical system” in the context used here refers to a system in
which real physical power must be delivered to a target object. The power could
be in a form such as motion, heat, force, pressure, or many others, so the range
of applicability is very large. The domain of complexity encompasses what we call
a “unit machine,” a mechanical system in which all parts either exchange physical
power directly or exchange material with little or no buffering. This definition
makes a distinction between the control of a specific unit machine or process on the
one hand, and designing control software for work cells, entire process plants, or
sections of a factory on the other.

The material we present was developed for teaching both undergraduate and
graduate courses to classes consisting mostly of mechanical engineering students.
Mechanical engineering students are often not experienced in computer program-
ming and therefore have to learn an appropriate programming language (more on
that in a moment), learn the design methodology, and develop the ability to apply
both in a series of lab exercises and projects. While a 15 week semester makes for a
somewhat compressed timetable to do all of this, the students seem to emerge with
a good understanding of how the pieces fit together. It is not unusual for many stu-
dents to progress directly to successful work in industrial applications based mostly
on the exposure in this course. The material is usable in other configurations as
well, including self study, multi-semester/quarter format with more emphasis on
design or capstone projects, and so on.

X1



xii Preface

The presentation in this text is based on a philosophy in which the control engi-
neering insight is embedded in a design layer rather than in computer code. Thus,
issues of portability, design review, and internal communication can be stressed.
The generation of functioning computer code is a separate process where consider-
ations of real time constraints, costs of computing hardware and software, and ease
of maintenance can be considered. Maintaining this separation is crucial to the idea
that production of control software for mechanical systems must be a predictable
engineering process.

The methodology we use for design specification is based on finite state machines
and semi-independent tasks. It has proved to be a methodology capable of handling
the level of complexity needed for these systems. It has some common elements with
more formal methodologies such as the universal modeling language (UML) but is
considerably simpler. The choice of methodology is based on its ability to describe
control behavior in a way that is easily explainable to a broad audience, as well as
the complementary property of easy hand translation for computer implementation
in almost any language or environment. Software portability to achieve maximum
protection to software investment is emphasized throughout.

Choosing computer languages provokes as much vehement discussion as reli-
gion or politics! To neutralize some of that partisanship, we have kept the design
layer as primary, with the actual software implementation kept as fluid as possible.
Nonetheless, it is necessary to choose some language in which to implement actual
control systems. While C is probably the most common language in use today, the
structures of C++ and Java provide us with more assistance in building a reusable
software infrastructure that makes the design model as obvious as possible. We have
therefore used C++ and Java for most of the actual control implementation and for
the example programs used throughout this text. Java has the advantage of greater
portability and is a cleaner language than C++ because it does not need backward
compatibility with C. Its syntax includes graphic user interface (GUI) constructs
and TCP/IP networking, for example, which are not included in the C++ syntax
and are thus not portable for C4++ applications. Java’s class files are executable on

- any platform supporting Java, so cross-development is greatly simplified. On the
other hand, Java is considerably slower by virtue of its use of a virtual machine for
execution; and features such as garbage collection are tricky to deal with in a high
speed, real time environment.

The basic programming model, however, is easily adapted for other program-
ming languages. Sample software for simulation using Matlab is given in the book
and ad hoc implementations in C or other purely algorithmic languages are easily
constructed.

We have three main software packages available to support development, two
in C++ and one in Java. All of these support the basic task/state design model,
and all can operate in a variety of environments to support simulation, prototyping,
and even production versions of software. The two C+-+ packages differ in that one
uses a much simpler scheduling module, so more of the decision-making about when
tasks should execute is left to the programmer. The other C++ package, and the



Preface X111

Java package, support a richer scheduling module. The simpler C++ package and
the Java package both support full TCP/IP networking in a manner that allows
tasks to be distributed over multiple computers through very simple configuration
changes, with no other changes needed in the control software.

The Windows NT family of operating systems (NT, 2000, and XP) have been
used for a number of years as the main development environment. C++ and Java
compilers are readily available as are cross-compilers for many target environments.
They have also been used as real time execution environments for early prototyp-
ing and debugging. However, the timing in any of the Windows environments is
not consistent to the sub-millisecond level needed for much mechanical system con-
trol, so other operating systems must be used for higher quality implementation
(although it is surprising how much can actually be accomplished without leaving
Windows). In the past several years we have used DOS, Windows NT modified
with RTX (from VenturCom), and QNX as real time platforms.! We are currently
working with Java and using QNX as the real time platform, since neither DOS nor
NT/RTX supports real-time Java effectively.

The operator interface is a critical part of many commercial control systems. Not
only does the interface contribute to efficient use of the target system, but it often
affects safety in critical ways. While a full discussion of human factors and other
disciplines affecting operator interface design is beyond the scope of this book, we
do discuss several means of constructing computer-based operator interfaces. The
book shows samples based on using Bridgeview (an industrial relative of Labview,
from National Instruments) and Visual Basic. These and other simplified GUI
construction methods are important from an efficiency point of view in that they can
often be used by control engineers to construct prototype operator interfaces without
having to devote inordinate amounts of time to the process. The construction of
GUlIs in Java is not specifically discussed in the book, but available sample Java
code demonstrates the use of Java’s Swing components in rapid GUI development.

A detailed case study is provided to illustrate the use of the design and im-
plementation methodology on a problem with reasonable complexity. The imple-
mentation is entirely a simulation, so it can be run anywhere Java or C+-+ can be
installed ~ and thus it makes a good vehicle for use by a class or as a self-study
example. Implementations are given for all three of the software infrastructures we
have developed.

All of the software packages and sample software supporting the book are avail-
able from the web site of one of the authors:

wwv.me.berkeley.edu/~dma
Additional Java information is available from the web site of another author:

Wuv.ugcs.caltech.edu/" joeringg/TranRunJ/

1DOS is not technically a rea) time platform, but it does not interfere with the real time

constructs we have created and thus allows much higher performance real-time scheduling than
Windows.



xiv Preface

There is considerable teaching material available on the class web sites for the
courses based on this book:

www.me.berkeley.edu/ME135 and www.me.berkeley. edu/ME230

This includes a current syllabus for each of these courses, lab assignments, notes,
and other relevant information. There is also a large amount of class presentation
material in PowerPoint format available; this can be requested by sending an email
to dma®me .berkeley.edu.
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