ilillilil‘li? s bR

SCIN R S il) X Rk LT (BEDER)

Control Software for Mechanical Systems:
Object-Oriented Design

in a Real-Time World

Glue dispenser

Linear stepping
motor actuator

)

vBase part

Turntable

-'
Rotary stepping ¥
motor actuator

[%] D.M.Auslander, J.R. Ridgely, J.D. Ringgenberg %

L AESOT] 4\.

il EERPHRRA

IR ERSRAL TN s
M RGEBN R
% EDHD)

Control Software for

Mechanical Systems
Object-Oriented Design in a Real-Time World

AEXF D MRH#

it =

English reprint edition copyright © 2004 by PEARSON EDUCATION ASIA LIMITED and TSINGHUA
UNIVERSITY PRESS.
Original English language title from Proprietor’s edition of the Work.

Original English language title: Control Software for Mechanical Systems: Object-Oriented Design in a
Real-Time World, 1* Edition by D.M. Auslander, I.R. Ridgely, and J.D. Ringgenberg, Copyright © 2002

All Rights Reserved.

Published by arrangement with the original publisher, Pearson Education, Inc., publishing as Prentice Hall
PTR.

AR i Pearson Education Inc. #28LZA W5 1 K28 R # U ER & 4T .

For sale and distribution in the People’s Republic of China exclusively (except Taiwan, Hong Kong SAR and
Macao SAR).

R T A RFAIEBRN (RIS ET ., 8 R TR XD E S SR) E 57T,
JERE TSR EER SRS ES B 01-2003-8780 &

RUARERE . BRETwA5E.
A HMEME Pearson Education (184 H & H AREH) MAF RS, THRZSEREHE.
BB RS B (CIP) 1B

HUBCR G F2 BI9AF: S2B R 401 [X6 % B34 =Control Software for Mechanical Systems: Object-Oriented
Design in a Real-Time World/ (3%) BEF248, (%) FHH, (F) WBAKE. —BEoA —irzr. &
ERFMRRA, 2004.4

ISBN 7-302-08233-2

LAl L OF.. Q.. Q.. N FRLE—HHEE—NHERE—IT V. TP273
P E A B FE CIP 3B F (2004) %5 017390 2

R & BRI M hb: JkRUEEREEHIAE
http://www.tup.com.cn 8 4R: 100084
#H2H: 010-6277 0175 EFARS: 010-6277 6969

RITWMIE: TARLE HiEE
HEWRt: THEF

BN Bl &: WEHEKFEAR

T & ZWEWenEITT

& 1T & FEBHEREIEERTH

F A 180%X230 E] 3. 2225

B R 20044 HE IRR 2004 44 B 1 REKY
S: ISBN 7-302-08233-2/TP * 5940

0 #: 1~3000

E O 36.007T

it

Al

ELRREY, EFRAAEXTEMIBRARNENRENAT, B,
X EEE TR RIS S AR ERNE . KEEHBREMELSHE 14
LSRN AMBRFEWE R H SR RA R ZEH AL, UESEHAN AR TN
EHBERTHPAS. SARRAKE, &HREESHIMARSEESRE &t X
KR, XEFMARSLE T KENERBNEEE, ALK L1 3)
. REYMAREBHFRT —METHENRRERT, TEEHATKH. S
H P28 2 -

EEBH, DAL 152 L IH Y B At B 15845 BRI RS . XF
REREEARTLARSIAE . e, h. B0, %, 4172, Pl “HERER4%,
RIE “BOLRERINE", BI&BA ST ROMERS R aREEHTEES
BYHGERSBNRSE. X—EX, —HEEN TR RERHIIRRZ TR
HifEi], A7 HEtRA TR TERIT, AT R &30S
&it.

AHHARRBREARENFRENEEREN, TUMIRITRERNKL
BFEMA . M TREANRZEERRERELK, Wik, MNES0meTe
SE—IVREE S RE, ELFUEIE R T IERE, RS XN
RATEREIMME MG . BAA 15 BRI G ERIEXEHEER, Ng
B, BERENKENHNBIERBUTESH TRIFHER. BT XS5
ME, BRRIHENEHABH TN AL DT RARBRR. AHHn
RFBa%, REESIHRRSURIIIN B FEE 2 RRE.

FBEINER MR B 32 6 TR A A R R, TR Mt
BHRERAERNGR. B, ROELSVRT TBENME. WHHPHE PN 5E
R, ST BRI R AR — ML AR, X BB R SR 4
B T EHEE A R R P ERIE . REERXEEAL, R PR R
GBI REAT DR — AN T B TR X — AR,

AR BRI RTEFTR AT, B LLE BRSHURI R BT AE 5 2R .
KEIEH, RXM T ERBHOIM AL E RS HERESN . X sha s
A—HEEME A UML) R R SE TR, EEMES5%. ik
¥, TERBRCRTESURMT KE S TEEN G IRBBEHITH, F
I B H R EE T AT EYEETE S AP T LI, A BRLRIAK
AT R T BOK PR B AR P R A B R i B

Il HUBR R Geds il kA ——SE By R [x4 5 i

EEBFENUE SR, BRIV BENE BRES, WSLhr LI R ay
BEAMETE-MES. REWL, BRIELE LEERE—FE S RLIMELERN
BHAE%L. BRCESVRLENBRAITHNES, BARBTERM. FiitE
RUS T g 170 5 WA SR T, C++0 Java STERATRIFEBNE K. Bk,
A A5AE] C++A Java KL BRI HRE, B RFTE RS EREFH R Cr+ A
Java WEN . HTFEFERGEHRE, Java £ Al BREMRGE S HEBEW A T ERTF Cit.
i, Java BiEEPRIEER LR RE(GUDSHA TCPIP MB LM, 1 Cr+if
B AR, i, ST CH BRI, XS EAABEN. Java
WIS AR T SCRF Java (P & EEIR aTHATH, XRKEHTHEEFE. H
fER—H, HTFEPITHRET BRI, Java FEEREEITEEMHNE, TES
HASEI IR, R EMOX RN, BER ST,

R, AR MBS UR T HAARREES. BhRMeT
Matlab BEATERIREIR M, THAE CiE SR EHE S P 2T,
BHERIEA A

BAWROE T AT EWHMR, HTFIRHEFR, HPEANEE CH+TFER,
51— AR Java FERI . X SR AE SRR AT SRS B TR, ZRAT DL
SR, RANRGT . BRI B RIS FIET, —4 Crift
R T SRR BB, Frel, XTAES B %R T X R 2 M AT
FRE A LA TR B —A C+H+EMAH Java A, T THAEE
INEE B, LB BRI C++IR AR Java SR, HRLLIXRE—F0 T
RSERXHF TCPIP M5 : SoVFilid +40 B A B IS M £ 4 HHEHL [BAE
%, MLALEE B P BT M IE K.

Windows NT RFI#HRERLENNT. 2000 1 XPY/ER FEMFRIFE, D2 A
TR TIFEE. EATHTES BARRENE EERIBR, CrRl Java HiXE
WRRAEZ BRI, ERITIHRER B AR, BB C++H Java 5%
BAE N K PATEREE . SR1T, %% Windows FREE e 9 B K8 REAE R B 2 BN LG
REBHTLT/HTZVIEE, UL, 7 HEATESRBITH, AR FH
faERIERFREWREITT Windows RAVEEEBSERE D THE, X—Hod
NAEHAF) . i F M0 JLERA]—H#H DOS. Windows NT RTX (K & VenturCom
A QNX NI F &' . BET, RAVEM Java #4797 %, TAEMH QNX 1E4
LIFE, XRZRE N DOS fl NT/RTX # A HEH M 50 Java,

NTRERUMHBEHRSE, BRERALLEEEENABRTS . BAERE

" MR LY, DOS AR A LTS, HESRIDFRKEH &2 AREED, R,
5 Windows Lk, HHARHAEREL.

hafllg

3 |

MU FHFREWAESEREFEE, THEESEMBZaM. REXTY
W R E B AKREER L ARERH AR EL8H TABKTEH, HK
TR R THWEE T EVRERERIUM L. XTERERERREH]
1§] Bridgeview (Labview f1Zhgk# 4, B National Instruments 23 5] 7 /) F! Visual
Basic Riit. MBCRIA LR, XS mEmmEi GUI W kg IER
HEER, BHIEMESMERXETERMERBERT, mMALKE LR
RBELELZ . ABREEITRMATH Java REE GUIL, RIRYLT — R
%, AR RaEE F Java B Swing 44443 7 & GUI.

ABRET —DNEHEE S0, LU RIAER AR B HE B 5
ik, BREBENERERE. XEER—MERISLI, BT UM %3 T
Java B C++HFP 5 Li21T, Filt, TREBBREHFEERHY, XANRGHFE A
REHIFEI TR . HXNBRAVFROEM KRR, RAVRE T =FhscBl.

A E R BT R A ARG, AT U R ST — 3 4R35 it A F 8

www.me.berkley.edu/ dma

HARH) Java {5 BT LU 5 —Rr1E 8 B3 s T8
www.ugcs.caltech.edu/"joeringg/TranRunJd
EH AL L MEERRAT AR T A B RRE A T &

www.me.berkley.edu/ME135
www.me.berkley.edu/ME230

HYT A58 TRENRFHE AN, SBEL. S22 0 mEmmEasa.
bRl AR K BR R PowerPoint Y87 SCRE: BT LB T 51 R4 kit i sk
BRI

dma@me.berkley.edu

PREFACE

The control of complex mechanical systems often falls between the cracks of engi-
neering curricula, but the topic occupies an extremely important place in the world
of industrial control. Most courses and professional reference material cover the
details of embedded control of very small systems using microcontrollers, as well
as details of electronics and control theory. In contrast, this book addresses issues
associated with the design of control software for mechanical systems consisting of
significant numbers of sensors and actuators - systems whose activities must be
coordinated. These systems often include a computer-based operator interface and
internal as well as external network connections.

The term “mechanical system” in the context used here refers to a system in
which real physical power must be delivered to a target object. The power could
be in a form such as motion, heat, force, pressure, or many others, so the range
of applicability is very large. The domain of complexity encompasses what we call
a “unit machine,” a mechanical system in which all parts either exchange physical
power directly or exchange material with little or no buffering. This definition
makes a distinction between the control of a specific unit machine or process on the
one hand, and designing control software for work cells, entire process plants, or
sections of a factory on the other.

The material we present was developed for teaching both undergraduate and
graduate courses to classes consisting mostly of mechanical engineering students.
Mechanical engineering students are often not experienced in computer program-
ming and therefore have to learn an appropriate programming language (more on
that in a moment), learn the design methodology, and develop the ability to apply
both in a series of lab exercises and projects. While a 15 week semester makes for a
somewhat compressed timetable to do all of this, the students seem to emerge with
a good understanding of how the pieces fit together. It is not unusual for many stu-
dents to progress directly to successful work in industrial applications based mostly
on the exposure in this course. The material is usable in other configurations as
well, including self study, multi-semester/quarter format with more emphasis on
design or capstone projects, and so on.

X1

xii Preface

The presentation in this text is based on a philosophy in which the control engi-
neering insight is embedded in a design layer rather than in computer code. Thus,
issues of portability, design review, and internal communication can be stressed.
The generation of functioning computer code is a separate process where consider-
ations of real time constraints, costs of computing hardware and software, and ease
of maintenance can be considered. Maintaining this separation is crucial to the idea
that production of control software for mechanical systems must be a predictable
engineering process.

The methodology we use for design specification is based on finite state machines
and semi-independent tasks. It has proved to be a methodology capable of handling
the level of complexity needed for these systems. It has some common elements with
more formal methodologies such as the universal modeling language (UML) but is
considerably simpler. The choice of methodology is based on its ability to describe
control behavior in a way that is easily explainable to a broad audience, as well as
the complementary property of easy hand translation for computer implementation
in almost any language or environment. Software portability to achieve maximum
protection to software investment is emphasized throughout.

Choosing computer languages provokes as much vehement discussion as reli-
gion or politics! To neutralize some of that partisanship, we have kept the design
layer as primary, with the actual software implementation kept as fluid as possible.
Nonetheless, it is necessary to choose some language in which to implement actual
control systems. While C is probably the most common language in use today, the
structures of C++ and Java provide us with more assistance in building a reusable
software infrastructure that makes the design model as obvious as possible. We have
therefore used C++ and Java for most of the actual control implementation and for
the example programs used throughout this text. Java has the advantage of greater
portability and is a cleaner language than C++ because it does not need backward
compatibility with C. Its syntax includes graphic user interface (GUI) constructs
and TCP/IP networking, for example, which are not included in the C++ syntax
and are thus not portable for C4++ applications. Java’s class files are executable on

- any platform supporting Java, so cross-development is greatly simplified. On the
other hand, Java is considerably slower by virtue of its use of a virtual machine for
execution; and features such as garbage collection are tricky to deal with in a high
speed, real time environment.

The basic programming model, however, is easily adapted for other program-
ming languages. Sample software for simulation using Matlab is given in the book
and ad hoc implementations in C or other purely algorithmic languages are easily
constructed.

We have three main software packages available to support development, two
in C++ and one in Java. All of these support the basic task/state design model,
and all can operate in a variety of environments to support simulation, prototyping,
and even production versions of software. The two C+-+ packages differ in that one
uses a much simpler scheduling module, so more of the decision-making about when
tasks should execute is left to the programmer. The other C++ package, and the

Preface X111

Java package, support a richer scheduling module. The simpler C++ package and
the Java package both support full TCP/IP networking in a manner that allows
tasks to be distributed over multiple computers through very simple configuration
changes, with no other changes needed in the control software.

The Windows NT family of operating systems (NT, 2000, and XP) have been
used for a number of years as the main development environment. C++ and Java
compilers are readily available as are cross-compilers for many target environments.
They have also been used as real time execution environments for early prototyp-
ing and debugging. However, the timing in any of the Windows environments is
not consistent to the sub-millisecond level needed for much mechanical system con-
trol, so other operating systems must be used for higher quality implementation
(although it is surprising how much can actually be accomplished without leaving
Windows). In the past several years we have used DOS, Windows NT modified
with RTX (from VenturCom), and QNX as real time platforms.! We are currently
working with Java and using QNX as the real time platform, since neither DOS nor
NT/RTX supports real-time Java effectively.

The operator interface is a critical part of many commercial control systems. Not
only does the interface contribute to efficient use of the target system, but it often
affects safety in critical ways. While a full discussion of human factors and other
disciplines affecting operator interface design is beyond the scope of this book, we
do discuss several means of constructing computer-based operator interfaces. The
book shows samples based on using Bridgeview (an industrial relative of Labview,
from National Instruments) and Visual Basic. These and other simplified GUI
construction methods are important from an efficiency point of view in that they can
often be used by control engineers to construct prototype operator interfaces without
having to devote inordinate amounts of time to the process. The construction of
GUlIs in Java is not specifically discussed in the book, but available sample Java
code demonstrates the use of Java’s Swing components in rapid GUI development.

A detailed case study is provided to illustrate the use of the design and im-
plementation methodology on a problem with reasonable complexity. The imple-
mentation is entirely a simulation, so it can be run anywhere Java or C+-+ can be
installed ~ and thus it makes a good vehicle for use by a class or as a self-study
example. Implementations are given for all three of the software infrastructures we
have developed.

All of the software packages and sample software supporting the book are avail-
able from the web site of one of the authors:

wwv.me.berkeley.edu/~dma
Additional Java information is available from the web site of another author:

Wuv.ugcs.caltech.edu/" joeringg/TranRunJ/

1DOS is not technically a rea) time platform, but it does not interfere with the real time

constructs we have created and thus allows much higher performance real-time scheduling than
Windows.

xiv Preface

There is considerable teaching material available on the class web sites for the
courses based on this book:

www.me.berkeley.edu/ME135 and www.me.berkeley. edu/ME230

This includes a current syllabus for each of these courses, lab assignments, notes,
and other relevant information. There is also a large amount of class presentation
material in PowerPoint format available; this can be requested by sending an email
to dma®me .berkeley.edu.

Contents

1 MECHATRONICS
1.1 A History of Increasing Complexity
1.2 Mechatronic System Organization
1.3 Amplifiers and Isolation
1.4 Scope: The Unit Machine
1.5 Control
1.6 Real-Time Software
1.7 Nasty Software Properties
1.8 Engineering Design and Computational Performance
1.9 Control System Organization
1.10 Software Portability
1.11 Operator Interface
1.12 Multicomputer Systems: Communication
1.13 The Design and Implementation Process
1.13.1 Performance Specification
1.13.2 Design Documentation
1.13.3 Simulation
1.13.4 Laboratory Prototype
1.13.5 Production Prototype
1.13.6 Production System
1.13.7 Maintenance

2 TASKS
2.1 Example: Task Selection in a Process System
2.2 Tasks and the Control Hierarchy
2.2.1 Intertask Communication
2.3 Task Structure Examples
2.3.1 Velocity Control of a DC Motor
2.3.2 Heater Control
2.3.3 Toaster Oven
2.3.4 Flexible Position Control of a DC Motor

v

W 00 U b W

19
20
21
22
22
23
24
26
27

Contents
2.4 Simulation 29
2.5 More Task Structure Examples 31
2.5.1 Coordinated, Two-Axis Motion 31
2.5.2 A Washing Machine 32
3 STATE TRANSITION LOGIC 35
3.1 States and Transitions 36
3.2 Transition Logic Diagrams 36
3.3 Tabular Form for Transition Logic 37
3.4 Example: Pulse-Width Modulation (PWM) 38
3.5 Transition Logic for the Process Control Example 39
3.6 Nonblocking State Code 41
3.7 State-Related Code 41
3.8 State Scanning: The Execution Cycle 42
3.9 Task Concurrency: Universal Real-Time Solution 43

4 DIRECT REALIZATION OF SYSTEM CONTROL SOFTWARE 45

4.1 Language 45
4.2 Time 47
4.3 Program Format 47
4.4 Simulation 48
4.5 Simulation in Matlab 48
4.5.1 Templates for Simulation Using Matlab 48
4.5.2 Simulation of PWM Generator 53
4.5.3 Simulation of Three-Tank Process System 57
4.6 Intertask Communication 61
4.7 Real-Time Realization 62
4.8 Real-Time Realization with Matlab 62
4.8.1 Heater Control Implementation in Matlab 63

5 SOFTWARE REALIZATION IN C++ 67
5.1 Simulation in C++ 67
5.2 Templates for Simulation in C++ (group-priority) 68
5.3 PWM Simulation Using C++ (group-priority) 80
5.4 Simulation in C++ (with TranRun4) 82
5.4.1 Components 82
5.4.2 The Master Scheduler 84
5.4.3 Process Objects and Task Lists 85
5.4.4 Task Objects 86
5.4.5 Tasks with No State Object 89
5.4.6 Creating Task Classes 89
5.4.7 State Objects 91
5.4.8 Creating State Classes 93
5.4.9 The Main File and UserMain() Function 94

5.5 Real-Time Realization with C++ 97

vi

Contents

6 INTERTASK COMMUNICATION

6.1 Communication Within a Process
6.1.1 Data Integrity
6.1.2 Design Rules

6.2 Communication Across Processes
6.2.1 Message Passing
6.2.2 Message Passing in the Group Priority Scheduler
6.2.3 Message Passing in the TranRun4 Scheduler
6.2.4 Distributed Database
6.2.5 Distributed Database in the Group Priority Scheduler
6.2.6 Distributed Database in the TranRun4 Scheduler

7 TIMING TECHNIQUES ON PC COMPATIBLES
7.1 Calibrated Time
7.2 Free-Running Timer
7.2.1 Hardware Timers on the PC
7.2.2 Performance Timers in Unix and Windows
7.3 Interrupt-Based Timing

8 MULTITASKING: PERFORMANCE IN THE REAL WORLD
8.1 Priority-Based Scheduling—Resource Shifting
8.1.1 Continuous vs. Intermittent Tasks
8.1.2 Cooperative Multitasking Modes
8.2 Matlab Template for Minimum-Latency Dispatcher
8.2.1 Example: Simulation of PWM-Actuated Heater
8.3 Cooperative Multitasking Using C++
8.3.1 Inheriting Task Behavior—Two PWMs
8.4 Preemptive Multitasking Modes
8.5 Realization of Interrupt-Based Dispatching
8.5.1 How Many Priority Levels Are Necessary?
8.5.2 Which Interrupt Sources Will Be Used?
8.5.3 Interrupt-Based Dispatching Functions
8.5.4 Attaching Dispatching Functions to Interrupts

9 A CHARACTER-BASED OPERATOR INTERFACE
9.1 Operator Interface Requirements
9.2 Context Sensitive Interfaces
9.3 User Interface Programming Paradigms
9.4 Mechatronics System Operator Interface
9.5 Operator Interface Programming
9.5.1 The Operator Screen
9.5.2 Programming Conventions in C++
9.5.3 Heater Control Operator Interface

99
100
100
102
105
105
106
112
115
116
118

121
121
122
123
124
125

127
127
128
129
131
131
133
137
138
140
141
141
142
143

145
145
146
147
147
148
148
149
151

Contents

vii

10 GRAPHICAL OPERATOR INTERFACES
10.1 Graphical Environments
10.1.1 Windowing Software: Events and Messages
10.1.2 Operator Interface vs. Standard Windowing Application
10.1.3 Simplified Programming for Windowing Systems
10.1.4 The Ease-of-Use Challenge
10.1.5 Methods of Simplifying Window-Style Programming
10.2 The Times-2 Problem
10.2.1 Times-2: Character-Based Interface
10.2.2 Times-2: Visual Basic
10.2.3 Times-2: Bridgeview
10.3 Screen Change
10.3.1 Screen Change in Visual Basic
10.3.2 Screen Change: Bridgeview
10.4 Heat Exchanger Control in Bridgeview
10.5 Interprocess Communication: DDE
10.5.1 DDE: The C++ Side
10.5.2 Communicating with Excel
10.5.3 A DDE Server in C++
10.5.4 DDE Communication Between C++ and Visual Basic
10.5.5 DDE Communication Between C++ and Bridgeview
10.6 Putting It All Together

11 DISTRIBUTED CONTROL I: NET BASICS
11.1 Multiprocessor Architectures
11.1.1 Symmetric Multiprocessing (SMP)
11.1.2 Buses
11.1.3 Networks
11.1.4 Point-to-Point Connections
11.2 TCP/IP Networking
11.2.1 The Physical Context
11.2.2 Interconnection Protocols
11.2.3 TCP and UDP
11.2.4 Client/Server Architecture
11.3 Implementation of UDP
11.3.1 Sockets
11.3.2 Setting Up for Network Data Exchange
11.3.3 Nonblocking Network Calls
11.3.4 Receiving Information
11.3.5 Client-Side Setup
11.4 The Application Layer
11.4.1 Data Coding
11.4.2 Building the Packet
11.4.3 Parsing a Packet

155
156
156
157
157
158
158
158
158
160
162
166
166
168
171
173
173
176
177
178
180
181

185
186
186
186
187
189
190
190
191
191
192
192
192
193
195
195
196
197
197
198
200

viii Contents

12 DISTRIBUTED CONTROL II: A MECHATRONICS CONTROL

APPLICATION LAYER 203
12.1 Control System Application Protocol 203
12.2 Startup of Distributed Control Systems 207
12.3 Testing the Application Protocol 208
12.4 Using the Control Application Protocol 209
12.5 Compiling 212

13 JAVA FOR CONTROL SYSTEM SOFTWARE 213
- 13.1 The Java Language and API 214
13.1.1 Networking 214
13.1.2 AWT/Swing 214
13.1.3 Multithreading 214
13.2 Preconditions for Real-Time Programming in Java 215
13.2.1 Deterministic Garbage Coliection 215
13.2.2 Memory and Hardware Access 215
13.2.3 Timing 216
13.3 Advantages of Java for Control Software Design 216
13.3.1 Modularity 216
13.3.2 Distributed Control 217
13.3.3 Platform Independence and Prototyping 217
13.3.4 Operator Interface Design 217
13.4 Java and the Task/State Design Method 218
13.4.1 Inner Classes 218
13.4.2 Networking 218
13.4.3 Documentation 219
13.5 The Current State of Real-Time Java 219
14 PROGRAMMABLE LOGIC CONTROLLERS (PLCs) 221
14.1 Introduction 221
14.2 Goals 222
14.3 PLC Programming 223
14.3.1 When to Use a PLC 223
14.3.2 Ladder Logic 224
14.3.3 Grafcet/Sequential Flow Charts 226
14.4 The Task/State Model 226
14.5 State Transition Logic for a PLC 227
14.5.1 State Variables 227
14.5.2 Ladder Organization 227
14.5.3 Transitions 228
14.5.4 Outputs 229
14.5.5 Entry Activity 229
14.5.6 Action Outputs 229
14.5.7 Exit (Transition-Based) Outputs 229

14.5.8 Common Exit Activities 230

Contents

ix

14.6 PLC Multitasking

14.7 Modular Design

14.8 Example: Model Railroad Control
14.9 Simulation — Portability

15 ILLUSTRATIVE EXAMPLE: ASSEMBLY SYSTEM
15.1 The Assembly System
15.2 System Simulation
15.3 Development Sequence
15.4 Belt Motion Simulation (Glue00)
15.4.1 Modeling Belt Dynamics
15.4.2 Definition of Task Classes
15.4.3 Instantiating Tasks: the Main File
15.4.4 The Simulation Task
15.4.5 The Data Logging Task
15.4.6 Timing Mode
15.4.7 Compiling
15.4.8 Results
15.5 Oven Temperature Simulation (Glue01)
15.6 PID Control of Belt Position and Oven Temperature (Glue02)
15.6.1 Keeping Classes Generic
15.6.2 The PIDControl Class
15.6.3 Results
15.7 Better Control of Motion (Glue03)
15.7.1 Trapezoidal Motion Profile
15.7.2 Motion Profile Class
15.7.3 Profiler State Structure
15.7.4 Round-Off Error
15.7.5 Discretization Errors in Simulation
15.8 A Command Structure for Profiled Motion (Glue04)
15.8.1 Message-Based Command Structure
15.8.2 State Transition Audit Trail
15.8.3 Motion Results
15.9 Clamps (Glue05)
15.10 Robots (Glue06)
15.11 Cure/Unload (Glue07)
15.12 Making Widgets (Glue08)

16 THE GLUING CELL EXERCISE IN TRANRUN4
16.1 The Gluing System
16.2 Simulation and Prototyping
16.3 The Project Components
16.4 Glue00: Conveyor Simulation
16.4.1 The Dynamic Model
16.4.2 Creating the Conveyor Task

230
231
231
232

235
235
237
237
238
238
239
241
242
244
245
246
246
247
247
248
248
250
250
251
252
253
257
257
260
260
261
263
263
265
266
271

273
273
274
274
275
275
277

Contents

16.4.3 The Data Logging Task
16.4.4 Data Communication Between Tasks
16.4.5 The Main File
16.4.6 Glue00 Results
16.5 Glue0l: An Oven Simulation
16.5.1 Configuration and Status Printouts
16.6 Glue02: PID Control
16.7 Glue03: The Operator Interface
16.7.1 Results
16.8 Glue04: Motion Profiling
16.9 Glue05: Belt Sequencing
16.10 Glue06: The Glue Application Machine
16.11 GlueQ7: Transport Task Supervision
16.12 Glue08: The Completed Assembly System

17 THE GLUING CELL EXERCISE IN TRANRUNJ
17.1 Getting Started
17.1.1 Program Entry Point
17.1.2 The userMain Method
17.2 Writing Custom Tasks and States
17.2.1 Creating a Task Class
17.2.2 Creating a State Class
17.3 Implementing State Transition Logic
17.4 Global Data and Intertask Messaging
17.4.1 Global Data Items
17.4.2 Task Messages
17.5 Continuous vs. Intermittent Tasks
17.6 Scheduler Internals
17.6.1 Operating System Processes vs. CProcess
17.6.2 Foreground vs. Background Execution Lists
17.6.3 Scheduling Modes
17.7 Execution Profiling
17.8 Intertask Messaging Across Different Processes
17.9 Tips And Tricks
17.9.1 Judicious Use of Execution-Time Profiling
17.9.2 Integer Labels for Global Data and Task Message Inboxes
.17.9.3 The TaskMessageListener Interface
17.9.4 Scheduler Sleeping
17.9.5 Anonymous State Classes
17.10 Additional Information

BIBLIOGRAPHY
INDEX

280
284
286
288
288
289
291
292
297
299
306
307
309
311

315
315
315
316
317
317
319
320
321
321
322
323
324
324
325
325
325
326
328
328
328
328
329
329
330

331

333

