The
e g
Programming

Language

Bjarne Stroustrup

The
| Ct++
Programming
Language

Bjarne Stroustrup

AT&T Bell Laboratories
" Murray Hill, New Jersey

\ A4)
ADDISON-WESLEY PUBLISHING COMPANY

Reading, Massachusetts ¢ Menlo Park, California
Don Mills, Ontario ¢ Wokingham, England ¢ Amsterdam
Sydney ¢ Singapore ¢ Tokyo ¢ Mexico City
Bogotd e Santiago ¢ San Juan

This book is in the Addison-Wesley Series in Computer Science

Michael A. Harrison
Consulting Editor

Library of Congress Cataloging-in-Publication Data

Stroustrup, Bjarne,.
The C++ programming language.

Includes bibliographies and index.

1. C++ (Computer program language) I. Title.
II. Title: C plus plus programming language.
QA76.73.C153S77 1986 005.13'3 85-20087
ISBN 0-201-12078-X :

<

Copyright © 1986 by Bell Telephone Laboratories. Incorporated.

All rights reserved. No part of lhis puhlicuti«;n may besreproduced. stored in a retricval
system, or transmitted, in any form or by any means, cictronic, mechanical, photocopy-
ing, recording, or othcrwise, viithout the prior writtcn permission of the publisher.
Printed in the United States of America. Published simultancously in Canada.

This book was typesct in Times Roman-agg Courser by the author, using a Mergenthaler
Linotron 202 phototypesctter driven by a VAX-14750 running the 8th Edition of the
UNIX operating system.)

"DEC, PDP and VAX arc trademarks of Digital Equipment Corporation. Power 632 is a
trademark of Computer Consoles, Incorporated. UNIX is a trademark of AT&T Bell
Laboratorics. . .

ABCDEFGHIIK-DO-898765

‘1

e

Preface

Language shapes the way we think;
and determines what we can think about.
= B.L.Whorf

C++ is a general purpose programming language designed to make program-
ming more enjoyable for the serious programmer. Except for minor details,
C++ is.a superset of the C programming language. 1n addition to the facilities
provided by C, C++ provides flexible and efficient facilities for defining new
types. A programmer can partition an application into manageable pieces by
defining new types that closely match the concepts of the application. This
technique for program construction is often called data abstraction. Objects of
some user-defined types contain type information. Such objects can be used
conveniently and safely in contexts in which their type cannot be determined at
compile time. Programs using objects of such types are often called object
based. When used well, these techniques result shorter, easier to understand.
and easier to maintain programs.)

The key.concept in C++ is class. A class is a user-defined type. Classes
provide data hiding. guaranteed initialization of data. implicit type conversion
for user-defined types, dynamic typing, user-controlled memory management,
and mechanisms for overloading operators. C++ provides much better facili-
ties for type checking and for expressing modularity than C-.does. It also con-
tains improvements that are not directly related to classes, including symbolic
constants, inline substitution of functions, default function arguments, over-
loaded function names, free store management operators, and a reference type.
C++ retains C’s ability to deal efficiently with the fundamental objects of the
hardware (bits, bytes, words, addresses, etc.). This ailows the user-defined
types to be implemented with a pleasing degrce of efficicncy.

C++ and its standard libraries are designed for portability. The current
implementation will run on most systems that support C. C libraries can be
used from a C++ program, and most tools that support programming in C can
be used with C++.

This book is primarily intended to help serious programmers learn the
language and use it for nontrivial projects. It provides a complete description
of C++, many complete examples, and many more program fragments.

Acknowledgments
C++ could never have matured without the constant use, suggestions, and con-
structive criticism of many friends and colleagues. In particular, Tom Cargill,

Jim Coplien, Stu Feldman, Sandy Fraser, -Steve Johnson, Brfian Kernighan,

Bart Locanthi, Doug Mcliroy, Dennis Ritchie, Larry Rosler, Jerry Schwartz, .
and Jon Shopiro provided important ideas for development of the language.
Dave Presotto wrote the current implementation of the stream 1/O library.

In addition, hundreds of people contributed to the development of C++ and
its compiler by sending me suggestions for improvements, descriptions of prob-
lems they had encountered, and compiler errors. 1 can mention only a few:
Gary Bishop, Andrew Hume, Tom Karzes, Victor Milenkovic, Rob Murray,
Leonie Rose, Brian Schmult, and Gary Walker.

Many people have also helped with the production of this book, in particu-
lar, Jon Bentley, Laura Eaves, Brian Kernighan, Ted Kowalski, Steve Maha-
ney, Jon Shopiro, and the participants in the C++ course held at Bell Labs,
Columbus, Ohio, June 26-27, 1985.

l:reface

Contents

Acknowledgementsoooooeiiiiiiiiiiiii

Contents

Notes to the Reader

The Structure of This Bookccoovieeii .
Implementation Notesocoeuviennneii. eee

Exercises ..

Design Notesoooeoiiiiiiiiiiiiiiiee s e

Historical N

Ol et

Efficiency and Structurecoooviiiieeeiinni
Philosophical Note
Thinking about Programming in C++ e
Rules of Thumbccoooooootiiiiiieni o
Note to C Programmerscoovvverveneeen......,

References

...

...

[

SO OCNO U WL LD -

—

11

13
14

e -

S T
Chapter 4: Functions and Files

Contents .

Types and Declarations Tiavennas e e
Expressions and Statements e, e
Functions e Jeviveeininn e
Program Structure T e
Classesviiiiiii
Operator Overloadingoociiiienn,
29 References ...
0 CONSITUCIONS «..uieetiiieiie e
AE VWeCOrS v
.12 Inline Expansion e
A3 Derived Classesccoooiviiiiiniiiiniiiniann, ISR
.14 More about Operatorsc.ccoeeviinerniinniinnnn.. ek
15 Friends ..ol e
16 Generic VECtOrSoouvviiiiiioiiiiiiiee e
17 Polymorphic Vectorsccoooiiiiiiiiiiiiiiie
A8 Virtual Functions ..o

CX L

Chapter 2: Declarations and Constants

2.0 Declarations ..o
2.2 NAMEBS i
23 TYPES o e
2.4 CONSLANTS ..o
2.5 Saving Space ...
2.6 EXEICISES ..ottt

Chapter 3: Expressions and Statements

3.1 A Desk Calovdator o
3.2 Operator Summary ...l O
3.3 Statement Summary B
3.4 Comments and Indentation ... T SO
3.5 EXEICISES oo

A1 IntroGuUCtion .

4.2 Linkage ... e

4.3 Header Files
4.4 Files as Modules ...

...

" 4.5 How to Make ua Library (ORI e

4.6 FUNCHIONS .. o e

14

16
21
22
23
25
26

27
28
29

32
34
35
35
37

39

39

59
65
68

71

71
84
94
97
99

Contents

AT MaACTOS oottt i e
4.8 EXEICISES oottt ittt et ettt eeaeiaereaneaannes

Chapter 5: Classes

5.1 Introduction and Overviewccoiiiiiiiiiiinviinnnnnn.n.
5.2 Classes and Membersooiiiiiiiiiiiiiiiiiieinienn, s
5.3 Interfaces and Implementationscoiiiiiin
5.4 Friends and URIONS ...,
5.5 Constructors and Destructorscccvvvviinevnnennnn,
5.6 EXEICISES .oniitiiiiiiiiii e

Chapter 6: Operator Overloading

© 6.1 Introduction ...
6.2 Operator Functionsc.coceiiiiiiiiiivininninn, reeane
6.3 User-defined Type Conversionccccvveivninvnnnn.
6.4 CONStantsooo i,
6.5 Large Objectscoooeiiiiiniiiiiiiiviiens e
6.6 Assignment and Initialization e
6.7 Subscripting Tt
6.8 Function Call s
6.9 A String Class ..ot erens
6.10 Friends and Members ...

6.11 Caveat

6.12 EXEICISES . ooviini i e e

Chapter 7: Derived Classes

7.1 Introduction
7.2 Derived Classescciiiiiiiii
7.3 Alternative Interic. .
7.4 Adding te a Clos- 0
7.5 Heterogeneous bists oo
7.6 A Complete Program ... e e

7.7 Free SUore

T8 EXCICISOS oo e

Chapter 8: Streams

B Introduction .. o

8.2 Output

vii

129
131

133

133
134
142
149
157
166

viii Contents '
8.3 Files and Streamsoeovviiiiiiiiiviiiieeerii, 233
BAINPU ... 236
8.5 String Manipulationc.coo 241
8.6 Bufferingcoooooviiiiiiiiiiiiii e 242
8.7 Efficiencyc.ooooiiiiiiiiiiiiiiiiie e 244
8.8 EXEICISEScccouiiiiiiiiiiiiiiiiiiii it 244
Reference Manual 245
r.l Introduction 245
r.2 Lexical Conventions ... 245
r.3 Syntax Notationcccooooieiiiiiiiiiii 248
“ r.4 Names and Typesooooiiiiiiiiiiiini 248
r.5 Objects and Lvalueso......... 251
1.6 Conversionsc.ccccccoiiiiiiiiiii 252
r.7 Expressions T S e 254
1.8 Declarationsccccoooviiimiiieiii 265
r.9 Statements N e, 292
r.10 Function Definitions 296
r.11 Compiler Control Lines e 298
r.12 Constant Expressions 301
r.13 Portability Considerations_ 301
r.14 Syntax Summary ... 302
r.1s Differencgs from C ... 309
Index 313

Notes to the Reader

»

"The time has come,” the Walrus said,
“to speak of many things."
— L.Carroll

This chapter consists of an overview of this boc;k, a list of references,
and some ancillary notes on C++. The notes concern the history of
C++, ideas that influenced the design of C++. and thoughts about
programming in C++. This chapter is not an introduction: the notes
are not a prerequisite for understanding the following chapters, and
some notes assume knowledge of C++.

featlires of C++ intended to give the
mmers can read the first half of the
catures common to C and C++. The
for defining ‘new types; a novice may.
dy of this until after Chapters 2, 3 and 4. #
rib ires of C++ that are not involved in
control structures
of C++ that is
hapter 1, but the
However,
rnings, and

features that do not_have co resents the basic class
1owing how objects - of ' initialized,

2 Notes to the Reader

accessed, and finally cleaned up. Chapter 6 explains how to define unary and
binary operators for a user-defined type, how to specify conversions between
user-defined types, and how to specify the way every creation, deletion, and
copying of a value of a user-defined type is to be handled. Chapter 7 describes
the concept of a derived class, which enables a programmer to build mpre com-
plex classes from simpler ones, to provide alternative interfaces to a class, and
to handle objects in an efficient and type-secure manner in contexts in which
their type cannot be known at compile time.

Chaptcr 8 presents the ostream and istream classes provided for input
and output’in the standard library. This chapter has a dual purpose; it presents
a usetul facility that is also a realistic example of C++ use.

- Finally, the C++ reference manual is included.

References to parts of this book are of the form §2.3.4 (Chapter 2 sub-
‘section 3.4). Chapter r is the reference manual; for example §r.8.5.5.

Implementation Notes

At the time of writing, ull C++ implementations use versions of a single com-
piler front-endt. It is used on a large number of architectures, including
AT&T 3B, DEC VAX, IBM 370, and Motorola 68000 running versions of the
UNIX operating system. The program fragments in this book were directly
taken from source files that were compiled on a 3B20 runmng UNIX System V
release 2" , a VAX11/750 running 8th Edition UNIXl and a CCI Power 6/32
running BSD4.2 UNIX". The language described in thls book is “‘pure C++ ",
but the current compiler also implements a number of ‘“‘anachronisms”
(described in §r.15.3) that should ease a transition from C to C++.

Exercises

Exercises can be found at the end of chapters. The exercises are mainly of the
write-a-program variety. Always write enough code for a solution to be com-
piled and run with at least a few test cases. The exercises vary considerably in
difficulty, so they are marked with an estimate of their difficulty. The scale is
exponential so that if a (*f) exercise-takes you about five minutes, a (*2)
might take an hour, and a (*3) might take a day. The time needed to write
and test a program depends more on the reader’s experience than on the exer-
cise itself. A (1) exercise might take a day if the reader first has to get
acquainted with a new computer system to run it. On the other hand, a (*5)
exercise might be done in an hour by someone who happens to have the right
_coliection of programs handy. Any book on programming in C can be used as

t C++ is available from AT&T, Softwarc Sales and Markcting, PO Box 25000, Greensboro, NC
27420, USA (telephone 800-828-UNEX) or from your local sales organization for the UNEX System.

Exercises 3

a source of exerciscs for Chapters 2-4. Aho et. al! present many common
data structures and algorithms in terms of abstract data types. It can therefore
be used as a source of exercises for Chapters 5-7. However, the language used
in that book lacks both member functions and derived classes. Consequently,
the uscr-defined types can often be expressed more clegantly in C++.

Design Notes

Simplicity was an important design criterion; where there was a choice between
simpiifying the manual and other documentation or simplifying the compiler,
the former was chosen. Great importance was also attached to retaining com-
patibility with C; this precluded cleaning up C syntax.

C++ has no high-level data types and no high-level primitive operations.
For example, there is no matrix type with an inversion operator or a string
type with a concatenation operator. If a user wants such a type. it can be
defined in the language itself. In fact, defining a new general-purpose or
application-specific type is the most fundamental programming activity in C++-.
A well designed user-defined type differs from a built-in type only in the way
it is defined and not in the way it is used.

Features that would incur run-time or memory overheads even when not
used .were avoided. For example, ideas that would make it necessary to store
“housekeeping information™ in every object were rejected; if a user declares a
structure consisting of two 16-bit quantities, that structure will fit into a 32-bit
register. ‘

C++ was designed to be used in a rather traditional compilation and run-
time environment, the C programming environment on the UNIX system.
‘Facilities such as exception handling or concurrent programming that require
nontrivial loader and run-time support are not included in C++. Conse-
quently, a C++ implementation can be very easily ported. There are, how-
ever. good reasons for using C++ in an environment with significantly more
support available. Facilities such as dynamic loading, incremental compilation,
and a database of type definitions can be put to good use without affecting the
language.

Ct+ types and data-hiding featurcs rely on compile-time analysis of pro-
grams to prevent accidental corruption of data. They do not provide secrecy or
protection against someone deliberately breaking the rules. They can, how-
ever, be used freely without incurring run-time or space overheads.

Historical Note . .

Clearly C++ owes most to C’. C is retained as a subset, and so is C's
emphasis on facilities that are low-fevel enough to cope with the most demand-
.ing systems programming tasks. C in turn owes much to its predecessor
BCPL’; in fact, BCPL's // comment convention has been (re)introduced in

4 Notes to the Reader

C++. If you know BCPL you will notice that C++ still lacks a $valof. The
other main source of inspiration was Simula67* ; the class concept (with
derived classes and virtual functions) was borrowed from it. The Simula67
inspect statement was deliberately not introduced into C++. The reason for
that is to encourage modularity through the use of virtual functions. C++’s
facility for overloading operators and the freedom to place a declaration wher-
ever a statement can occur resembles Alg0168

The name C++ is a quite recent invention (summer of 1983). Earlier ver-
sions of the language collectively known as “C with Classes" have been in
use since 1980. The language was originally invented because the author
wanted to write some event-driven simulations for which Simula67 would have
been ideal, except for efficiency considerations. ‘‘C with Classes’ was used for
major simulation projects in which the facilities for writing programs that use
(only) minimal time and space were severely tested. “‘C with Classes” lacked
operator overloading, references, virtual functions, and many details. C++
was first installed outside the author’s research group in July, 1983; quite a few
current C++ features had not yet been invented, however.

The name C++ was coined by Rick Mascitti. - The name signifies the evolu-
tionary nature of the changes from C. *“++" is the C increment operator.
The slightly shorter name C+ is a syntax error; it has also been used as the
name of an unrelated language. Connoisseurs of C semantics find C++ infe-
rior to ++C. The language is not called D, since it is an extension of C and
does not attempt to remedy problems by removing features For yet another
interpretation of the name C++, see the appendix of Orwell®.

C++ was primarily desigried so that the author and his friends would not
have to program in assemblef; C, or various modern high-level languages. Its
main purpose is to make writing good programs easier and more pleasanf for
the individual programmer. - There never was a C++ paper design; design,
documentation, and impleméntation went on simultaneously. Naturally, the
C++ front-end is written ift: C++. There never was a “‘C++ project” either,
or a “C++ design committee™. Throughout, C++ evolved, and continués to
evolve, to cope with problems encountered by users, and threugh dlscussiéns

~between the author and- his friends and colleagues.

C was chosen as the base language for C++ because it (1) is vcrsatlle
_terse, and relatively low-level; (2) is adequate for most system programming
- tasks; (3) runs everywhere and on everything; and (4) fits into the UNIX pro-
grammmg environment. C has its problems, but a language designed from
scratch would have some too, and we know C’s problems. Most important,
working with C enabled “C with Classes” to be a useful (if awkward) tool
within months of the first thought of adding Simula-like classes to C.

As C++ became more widely used, and as the faéilities it provided over
and above those of C became more significant, the question of whether to
retain, compatibility was raised again and again. Clearly some problems could
be avoided if some of the C herltage was rejected (see for example, Sethi' %),

Historical Note 5

This was not done because (1) there are millions of lines of C code that might
benefit from C++, provided that a complete rewrite from C to C++ were
unnecessary; (2) there are hundreds of thousands of lines of library functlons
and utility software code written in C that could be used from/on C++ pro-
grams provided C++ were completely link compatible and syntactically very
similar to C; (3) there are tens of thousands of programmers who know C and
therefore need only learn to use the new features of C++ and not relearn the
basics; and (4) since C++ and C will be used on the same systems by the same
people for years, the differences should be either very large or very ‘sma‘l_l“to
minimize mistakes and confusion. Lately, the definition of C++ has been
revised to ensure that any construct that is both legal C and legal C++ actu?illy
has the same meaning in both languages.

The C language has itself evolved over the last few years, partly under the
influence of the development of C++ (see Rosler''). The preliminary draft
ANSI C standard' contains a function declaration syntax borrowed from “C
with classes.”” Borrowing works both ways; for example, the voids+ pomter
type was invented for ANSI C and first implemented in C++. When the ANSI
standard has developed a bit further, it will be time to review C++ to remove
gratuitous incompatibilities. For example, the preprocessor (§r.11) wnlf be
modernized, and the rules for doing floating point arithmetic will probably
have to be adjusted. That should not be painful; both C and ANSI C are very
close to being subsets of C++ (see §r.15).

Efficiency and Structure
C++ was developed from the C programming language and with very few
_ exceptions retains Cc as a subset. The base language, the C subset of C++, is
deslgned so that there is a very close éorrespondence between its types, opera-
tors, and statements and the objects computers deal with directly: numbérs
characters, and addresses. Except for the free store operators new and
\delete individual C++ expressions and statements typically need no hldﬂen
run-time support or subroutmes
C++ uses the same function call and return sequences as C, When even
this relatively efficient mechanism is too expensive, a C++ function can’ be
substituted inline, thus enjoying the notauonal convenience of . funictions
without run-time overhead.

_ Qne of the original aims for C was to replace assembly coding for the most
'demandmg systems programming tasks. When C++ was designed, care- was
taken not to compromise the gains in this area. The difference betwéen ‘Cand
C++ is primarily in the degree of emphasis on types and structure. C is
expressive and permissive. C++ is even more expressive, but to ghin that
increase in expressiveness, the programmer must pay more attention to the
types of objects. Knowing the types of objects, the compiler can deal corréctly
with expressions when the programmer would otherwise have had to specify

6 Notes to the Reader

operations in painful detail. Knowing the types of objects also enables the
compiler to detect errors that would otherwise have persisted until testing.
Note that using the type system to get function argument checking, to protect
data from accidental corruption, to provide new types, to provide new opera-
tors, etc., does not in itself increase run-time or space overheads.

The emphasis on structure in the design of C++ reflects the increase in the
scale of programs written since C was designed. You can make a small pro-
gram (less than 1000 lines) work through brute force even when breaking
every rule of good style. For a larger program, this is simply not so. If the
structure of a 10,000 line program is bad, you will find thdt new errors are
introduced as fast as old ones are removed. C++ was designed to enable
- larger programs to be structured in a rational way so that it would not be
unreasonable for a single person to cope with up to 25,000 lines of code.
Much larger programs exist, but the ones that work generally turn out to con-
sist of many nearly independent parts, each one well below the limits previ-
ously mentioned. Naturally, the difficulty of writing and maintaining a pro-
gram depends on the complexity of the application and not simply on the
number of lines of program text, so the exact numbers used to express the
preceding ideas should not be taken too seriously:
~ However, not every piece of code can be well structured, hardware
independent, easy to read, etc. C++ possesses features that are intended for
manipulating hardware facilities in a direct and efficient way without regard
for safety or ease of comprehension. It also possesses facilities for hiding such
code behind elegant and safe interfaces.

This book emphasizes techniques for providing general-purpose facilities,
generally useful types, libraries, etc. These techniques will serve programmers
of small programs as well as programmers of large ones. Furthermore, since
all nontrivial programs consist of many semi-independent parts, the techniques
for writing such parts serve programmers of bdth systems and applications.

One might suspect that specifying a program using a more detailed type
structure would lead to a larger program source text. With C++ this is not so;
a C++ program declaring functions argument types, using classes, etc., is typi-
cally a bit shorter than the equivalent C program not usmg these facilities.

Philosophical Note

A programming language serves two related purposes: it prowdes a vehicle for

the programmer to specify actions to be executed and a set of concepts for the

programmer to use when thinking about what can be done. The first aspect

ideally requires a language that is *‘close to the machine”, so that all important

aspects of a machine are handled simply and efficiently in a way that is reason- .
ably obvious to the programmer. The C language was primarily deslgned with

this in mind. The second aspect ideally requires a language that is “‘close to

the problem to be solved” so that the concepts of a solution can be expressed

Philosophical Note 7

directly and concisely. The facilities added to C to create C++ were primarily
designed with this in mind.

The connection between the language in which we think/program and the
problems and solutions we can imagine is very close. For this reason restrict-
ing language features with the intent of eliminating programmer errors is at
best dangerous. As with natural languages, there are great benefits from being
at least bilingual. The language provides a programmer with a sct of concep-
tual tools; if these are inadequate for a task. they will simply be ignored. For
example, seriously restricting the concept of a pointer simply forces the pro-
grammer to use a vector plus integer arithmetic to implement structures,
pointers, etc. Good design and the absence of errors cannot be guaranteed by
mere language features.

The type system should be especially helpful for nontrivial tasks. The C++
class concept has, in fact, proven itself as a powerful conceptual tool.

Thinking about Programming in C++

Ideally one approaches the task of designing a prograiy in three stages: first
gain a clear understanding of the problem. then idennfy the key concepts
involved in a solution, and finally express that solution in a program. How-
ever, the details of the problem and the concepts of the solution often become
clearly understood only through the effort to express them in the program -
this is where the choice of programming language matters.

In most applications there are concepts that are not casily represented in a
program as either one of the fundamental types or as a function without associ-
ated static data. Given such a concept, declare a class to represent it in the
program. A class is a type; that is, it specifies how objects of its class behave:
how they are created, how they can be manipulated, how they are destroyed.
A class also specifies how objects are represented. but at the carly stages of the
design of a program, that is not (should not be) the major concern. The key to
writing a good program is to design classes so that each cleanly represents a

tions: How are objects of this class created? Can objects of this class be copied
and/or destroyed? What operations can be done on such objects? If there are
no good answers to such questions, the concept probably wasn’t “clean™ in the
first place, and it might be a good idea to think a bit more about the problem
and the proposed solution instead of immediately starting to *‘code around” the
probiems:

The concepts that are easiest to deal with are the ones that have a tradi-
tional mathematical formalism: numbers of all sorts. sets, geometric shapes,
etc. There really ought to be standard libraries of classes representing such
concepts, but this is not the case at the time of writing. C++ is still yodng,
and its libraries have not yet matured to the same degree as the language itself.

A concept does not exist in a vacuum; there are always clusters of related

8 Notes to the Reader

concepts. Organizing the relationship between classes in a program, that is,
determining the exact relationship between the different concepts: involved .in a
solution, is often harder than laying out the individual classes in the first place.
The result had better not be a muddle in which.every class (concept) depends
on every other. Consider two classes, A and B: Relationships such as ‘A calls
functions from B,” “A creates Bs,”.and “A has a B member” seldom cause
major problems, and relationships such as “A usés data from B’ can typically
be eliminated (simply don’t use public data. members). The trouble spots are
most often relations that are naturally expressed as“AisaBand”

One of the most powerful intellectual tools for managing complexity is
hierarchical ordering; that is, organizing related concepts into a tree structure
with the most general concept at the root. In C++, derived classes represent
such structures. A program can. often be orgg;;ljgcd as a set of trees (a
forest?). That is, the programmer specifies a mumber of base classes, each
with its own set of derived classes. Virtual functions (§7.2.8) can often be
used to define a set of operations for the most ge_n'ésrai version of a concept (a
base class). When necessary, the interpretation. of these operations can be
refined for particular special cases (derived classes).. =

. Naturally, this organization has its limits. Inp; ticular, a set of concepts is
.sometimes better organized as a directed acycliggf&l@ in which a concept can
directly depend on more than one, other concept; faﬁ;,a;ample,.’iA is aBgﬂgd a
C and" There is no direct support for this. +, but such relations can
be represented with some loss of elegance and a. it of extra work (§7.2.5).

Sometimes even a directed acyclic graph seéiiiﬁ"ijsufﬁéicnt for organizing
~ the concepts of a program; some concepts scen %n be inherently mutually
dependent. If a set of mutually dependent classes is so small that it is easy to
understand, the cyclic dependencies need not.be a problem. The idea of
friend classes (§5.4.1) can be used to represent sets of ‘mutually dependent

classes in C++. ER e : TN
If you can organize the concepts of a progr

g

¢

oncepts o am only into a gener
(and not a tree or a'dircct‘gdfgdgigl)ic; graph), ,’gpq;lg,_:you; c;a,ng@;f oca
mutual dependencies, then you are most likely in : _predicament t|
gramming language can help you out of. Unless y

ou ess you can conceive of some
easily stated relationships between the basic concepts, the program is | :
become unmanageable. R Sohe

Remember that much programming can be simply and cl
only primitive types, data structures, plain functions, and a few clas
standard library. The whole apparatus involved in defining né\ifr"f
not be used except when there is a real need. = Bl -

The question *“How does one write good programs in C++?” is very similar
to the question “How does one write. good English prose?” There are two
kinds of answers: “Know what you want to say” and “Practice. Imitate good
writing.” Both kinds of advice appear to be as appropriate for C++ as they
are for English — and as hard to follow. ’

