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FUNDAMENTAL CONSTANTS

Constant Symbol Value
Power of 10 Units
Speed of light c 2.99792458* 10 ms™
Elementary charge e 1.602176 565 107 C
PlancKk’s constant h 6.626 069 57 1073 I8
h=h/2r 1.054571726 107 Js
Boltzmann’s constant k 1.3806488 1073 JK!
Avogadro’s constant N, 6.02214129 10% mol™!
Gas constant R=N,k 8.3144621 JK! mol™
Faraday’s constant F=Ne 9.648533 65 10* Cmol™*
Mass
Electron m, 9.10938291 107 kg
Proton m, 1.672621777 107 kg
Neutron m, 1.674927 351 10% kg
Atomic mass constant m, 1.660538921 107 kg
Vacuum permeability JI% 4m* 1077 Js2C?m™!
Vacuum permittivity = 1/uc 8.854187817 107" J'Cm?!
4ne, 1.112650056 10710 J'Cm™
Bohr magneton U, = eh/2m, 9.274009 68 107 JT
Nuclear magneton My = eh/2m 5.05078353 107 TT
Proton magnetic moment X 1.410606 743 1072 JT!
g-Value of electron 5 2.002319304
Magnetogyric ratio
Electron Y, =-gel2m, -1.001159 652 10" Ckg™!
Proton %= Z/JP/h 2.675222004 10 Ckg™
Bohr radius a,=4ng lle’m, 5.291772109 10 m
Rydberg constant R.= me'/8h’ce} 1.097373157 10° cm™
heR_Je 13.605692 53 ev
Fine-structure constant o= e c/2h 7.297 3525698 107
o' 1.37035999074 10?
Stefan-Boltzmann constant o =2’k 15h°c 5.670373 10°* Wm2K*
Standard acceleration of free fall g 9.80665* ms™
Gravitational constant G 6.67384 0™ Nm?kg™

* Exact value. For current values of the constants, see the National Institute of Standards and Technology (NIST) website.






PREFACE

Our Physical Chemistry is continuously evolving in response
to users’ comments and our own imagination. The principal
change in this edition is the addition of a new co-author to the
team, and we are very pleased to welcome James Keeler of the
University of Cambridge. He is already an experienced author
and we are very happy to have him on board.

As always, we strive to make the text helpful to students
and usable by instructors. We developed the popular “Topic’
arrangement in the preceding edition, but have taken the
concept further in this edition and have replaced chapters by
Focuses. Although that is principally no more than a change of
name, it does signal that groups of Topics treat related groups
of concepts which might demand more than a single chapter
in a conventional arrangement. We know that many instruc-
tors welcome the flexibility that the Topic concept provides,
because it makes the material easy to rearrange or trim.

We also know that students welcome the Topic arrangement
as it makes processing of the material they cover less daunt-
ing and more focused. With them in mind we have developed
additional help with the manipulation of equations in the
form of annotations, and The chemist’s toolkits provide further
background at the point of use. As these Toolkits are often rel-
evant to more than one Topic, they also appear in consolidated
and enhanced form on the website. Some of the material pre-
viously carried in the ‘Mathematical backgrounds’ has been
used in this enhancement. The web also provides a number
of sections called A deeper look. As their name suggests, these
sections take the material in the text further than we consider
appropriate for the printed version but are there for students
and instructors who wish to extend their knowledge and see
the details of more advanced calculations.

Another major change is the replacement of the
‘Justifications’ that show how an equation is derived. Our in-
tention has been to maintain the separation of the equation
and its derivation so that review is made simple, but at the
same time to acknowledge that mathematics is an integral fea-
ture of learning. Thus, the text now sets up a question and the
How is that done? section that immediately follows develops
the relevant equation, which then flows into the following text.

The worked Examples are a crucially important part of the
learning experience. We have enhanced their presentation by
replacing the ‘Method’ by the more encouraging Collect your
thoughts, where with this small change we acknowledge that
different approaches are possible but that students welcome
guidance. The Brief illustrations remain: they are intended
simply to show how an equation is implemented and give a
sense of the order of magnitude of a property.

It is inevitable that in an evolving subject, and with evolv-
ing interests and approaches to teaching, some subjects wither
and die and are replaced by new growth. We listen carefully
to trends of this kind, and adjust our treatment accordingly.
The topical approach enables us to be more accommodating
of fading fashions because a Topic can so easily be omitted by
an instructor, but we have had to remove some subjects simply
to keep the bulk of the text manageable and have used the web
to maintain the comprehensive character of the text without
overburdening the presentation.

This book is a living, evolving text. As such, it depends very
much on input from users throughout the world, and we wel-
come your advice and comments.

PWA
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USING THE BOOK

TO THE STUDENT

For this eleventh edition we have developed the range of
learning aids to suit your needs more closely than ever before.
In addition to the variety of features already present, we now
derive key equations in a helpful new way, through the How
is that done? sections, to emphasize how mathematics is an
interesting, essential, and integral feature of understanding
physical chemistry.

Innovative structure

Short Topics are grouped into Focus sections, making the
subject more accessible. Each Topic opens with a comment
on why it is important, a statement of its key idea, and a brief
summary of the background that you need to know.

Notes on good practice

Our ‘Notes on good practice’ will help you avoid making
common mistakes. Among other things, they encourage con-
formity to the international language of science by setting out
the conventions and procedures adopted by the International
Union of Pure and Applied Chemistry (IUPAC).

Resource section

The Resource section at the end of the book includes a table
of useful integrals, extensive tables of physical and chemical
data, and character tables. Short extracts of most of these
tables appear in the Topics themselves: they are there to give
you an idea of the typical values of the physical quantities
mentioned in the text.

Checklist of concepts

A checklist of key concepts is provided at the end of each
Topic, so that you can tick off the ones you have mastered.

a

\

TOPIC 2A Internal energy

> Why do you need to know this material?
The First Law of thermodynamics is the foundation of the
discussion of the role of energy in chemistry. Wherever the
generation or use of energy in physical transformations or
chemical reactions is of interest, lying in the background
are the concepts introduced by the First Law.

> Whatis y idea?

The total energy of an isolated system is constant.

» What do you need to know already?

This Topic makes use of the discussion of the properties of
gases (Topic 1A), particularly the perfect gas law. It builds
on the definition of work given in The chemist’s toolkit 6.

For the purposes of thermodynamics, the universe is divided
into two parts, the system and its surroundings. The system is
the part of the world of interest. It may be a reaction vessel, an
engine, an electrochemical cell, a biological cell, and so on. The
surroundings comprise the region outside the system and are
where measurements are made. The type of system depends
on the characteristics of the boundary that divides it from the

For example, a closed system can expand and thereby raise a
weight in the surroundings; a closed system may also transfer
energy to the surroundings if they are at a lower temperature.
An isolated system is a closed system that has neither me-
chanical nor thermal contact with its surroundings.

2a1 Work, heat, and energy

Although ther deals with observations on bulk
systems, it is i enriched by und ding the
molecular origins of these observations.

(a) Operational definitions

The fundamental physical property in thermodynamics is
work: work is done to achieve motion against an opposing
force (The chemist’s toolkit 6). A simple example is the process
of raising a weight against the pull of gravity. A process does
work if in principle it can be harnessed to raise a weight some-
where in the surroundings. An example of doing work is the
expansion of a gas that pushes out a piston: the motion of the
piston can in principle be used to raise a weight. Another ex-
ample is a chemical reaction in a cell, which leads to an electric_/

»

A note on good practice An allotrope is a particular molecular
form of an element (such as O, and O,) and may be solid, liquid,
or gas. A polymorph is one of a number of solid phases of an ele-

ment or compound.

The number of phases in a system is denoted P. A gas, or a

\_ gaseous mixture, is a single phase (P = 1), a crystal of a sub- )

e )
Contents
1 Common integrals 862
2 Units 864
\_ 3 Data 865 )
r
Checklist of concepts
[0 1. The physical state of a sample of a substance, its physi-
cal condition, is defined by its physical properties.
[0 2. Mechanical equilibrium is the condition of equality of
\_ pressure on either side of a shared movable wall. )




Using the book Vi

PRESENTING THE MATHEMATICS

How is that done?

You need to understand how an equation is derived from rea-
sonable assumptions and the details of the mathematical steps
involved. This is accomplished in the text through the new
‘How is that done?’ sections, which replace the Justifications of
earlier editions. Each one leads from an issue that arises in the
text, develops the necessary mathematics, and arrives at the
equation or conclusion that resolves the issue. These sections
maintain the separation of the equation and its derivation
so that you can find them easily for review, but at the same
time emphasize that mathematics is an essential feature of
physical chemistry.

The chemist’s toolkits

The chemist’s toolkits, which are much more numerous in this
edition, are reminders of the key mathematical, physical, and
chemical concepts that you need to understand in order to
follow the text. They appear where they are first needed. Many
of these Toolkits are relevant to more than one Topic, and a
compilation of them, with enhancements in the form of more
information and brief illustrations, appears on the web site.
www.oup.com/uk/pchem11e/

Annotated equations and equation labels

We have annotated many equations to help you follow how
they are developed. An annotation can take you across the
equals sign: it is a reminder of the substitution used, an
approximation made, the terms that have been assumed
constant, an integral used, and so on. An annotation can
also be a reminder of the significance of an individual term
in an expression. We sometimes colour a collection of num-
bers or symbols to show how they carry from one line to the
next. Many of the equations are labelled to highlight their
significance.

Checklists of equations

A handy checklist at the end of each topic summarizes the
most important equations and the conditions under which
they apply. Don't think, however, that you have to memorize
every equation in these checklists.

a
How is that done? 4A.1 Deducing the phase rule

The argument that leads to the phase rule is most easily appre-
ciated by first thinking about the simpler case when only one
component is present and then generalizing the result to an
arbitrary number of components.

Step 1 Consider the case where only one component is present

When only one phase is present (P = 1), both p and T can be
varied independently, so F = 2. Now consider the case where
two phases o and P are in equilibrium (P = 2). If the phases
are in equilibrium at a given pressure and temperature, their

r
WD LUEY Properties of bulk matter

chemical potentials must be equal:

The state of a bulk sample of matter is defined by specifying the
values of various properties. Among them are:

The mass, m, a measure of the quantity of matter present
(unit: kilogram, kg).

The volume, V, a measure of the quantity of space the sam-
ple occupies (unit: cubic metre, m’).

The amount of substance, #, a measure of the number of
specified entities (atoms, molecules, or formula units) pre-

K sent (unit: mole, mol). )

Y

d(1/f)/dx=—(1/F)df/dx
used twice

dN <£

2 \
OV e@ /T
\% v B0
Cym= =R6 T sV/T _R(Tj (ee"/T —1)
By noting that e® /" =(e®"*")?, this expression can be rearranged
into

ClL=RFT) F(T)= [9 J[I_A]

Vibrational contribution to C,

vm 13E.3
\_ (BE3F 4

e N
Checklist of equations

Property Equation

Gibbs energy of mixing A,.xG =nRT(x,Inx, + x,In x,)

\_ Entropy of mixing A, S =—nR(x, Inx, + x;Inx;)




Using the book

SETTING UP AND SOLVING PROBLEMS

Brief illustrations

A Brief illustration shows you how to use an equation or con-
cept that has just been introduced in the text. It shows you
how to use data and manipulate units correctly. It also helps
you to become familiar with the magnitudes of quantities.

Examples

Worked Examples are more detailed illustrations of the appli-
cation of the material, and typically require you to assemble
and deploy the relevant concepts and equations.

We suggest how you should collect your thoughts (that is a
new feature) and then proceed to a solution. All the worked
Examples are accompanied by Self-tests to enable you to test
your grasp of the material after working through our solution
as set out in the Example.

Discussion questions

Discussion questions appear at the end of every Focus, and are
organised by Topic. These questions are designed to encour-
age you to reflect on the material you have just read, to review
the key concepts, and sometimes to think about its implica-
tions and limitations.

Exercises and problems

Exercises and Problems are also provided at the end of every
Focus and organised by Topic. Exercises are designed as
relatively straightforward numerical tests; the Problems are
more challenging and typically involve constructing a more
detailed answer. The Exercises come in related pairs, with
final numerical answers available online for the ‘@’ questions.
Final numerical answers to the odd-numbered Problems are
also available online.

Integrated activities

At the end of every Focus you will find questions that span
several Topics. They are designed to help you use your knowl-
edge creatively in a variety of ways.

-

\

Brief illustration 3B.1

When the volume of any perfect gas is doubled at constant
temperature, V,/V; =2, and hence the change in molar entropy

of the system is

AS, = (8.3145]K ' mol ™) X In2 = +5.76 J K" mol '

P

sl Using the perfect gas law

In an industrial process, nitrogen gas is introduced into
a vessel of constant volume at a pressure of 100atm and a
temperature of 300K. The gas is then heated to 500 K. What
pressure would the gas then exert, assuming that it behaved

as a perfect gas?

Collect your thoughts The pressure is expected to be greater

\__on account of the increase in temperature. The perfect gas

a

FOCUS 3

Assume that all gases are perfect and that data refer to 298.15 K unless otherwise stated.

Entropy

The evolution of life requires the organization of a very large number
of molecules into biological cells. Does the formation of living organisms
violate the Second Law of thermodynamics? State your conclusion clearly and
present detailed arguments to support it

Consider a process in which the entropy of a system increases by
125]K" and the entropy of the surroundings decreases by 125]K ' Is the
process spontaneous?

Consider a process in which the entropy of a system increases by
105] K" and the entropy of the surroundings decreases by 95 K" Is the
process spontaneous?

Consider a process in which 100K] of energy is transferred reversibly
and isothermally as heat to a large block of copper. Calculate the change in
entropy of the block if the process takes place at (a) 0°C, (b) 50°C.

Consider a process in which 250K] of energy is transferred reversibly
and isothermally as heat o a large block of lead. Calculate the change in
entropy of the block if the process takes place at (a) 20°C, (b) 100°C.

Caleulate the change in entropy of the gas when 15 of carbon dioxide
gas are allowed to expand isothermally from 1.0dm” to 3.0dm” at 300K.

Calculate the change in entropy of the gas when 4.00g of nitrogen is
allowed to expand isothermally from 500 cm’ to 750 ¢m’at 300K.

Calculate the change in the entropies of the system and the
surroundings, and the total change in entropy, when a sample of nitrogen

A sample consisting of 100 mol of perfect gas molecules at 27°C is
expanded isothermally from an initial pressure of 3.00atm to a final pressure
of L00atm in two ways: (a) reversibly, and (b) against a constant external

pressure of 1.00atm. Evaluate ¢, w, AU, AH, AS, AS,,,, and AS,, in each case.

A sample consisting of 0.10 mol of perfect gas molecules is held by a
piston inside a cylinder such that the volume is 1.25dm'; the external pressure
is constant at 1.00bar and the temperature is maintained at 300 Kby a
thermostat. The piston is released so that the gas can expand. Calculate (a) the
volume of the gas when the expansion is complete; (b) the work done when
the gas expands; (c) the heat absorbed by the system. Hence calculate AS,.

Consider a Carnot cycle in which the working substance is 0.10mol of
perfect gas molecules, the temperature of the hot source is 373 K, and that

of the cold sink is 273 K; the initial volume of gas is 1.00 dm’, which doubles
over the course of the first isothermal stage. For the reversible adiabatic stages
it may be assumed that VT = constant. (a) Calculate the volume of the gas
after Stage 1 and after Stage 2 (Fig. 34.8). (b) Calculate the volume of gas after
Stage 3 by considering the reversible adiabatic compression from the starting
point. (c) Hence, for each of the four stages of the cycle, calculate the heat

Discuss the significance of the terms ispersal’ and ‘disorder’ in the
context of the Second Law,

Discuss the relationships between the various formulations of the
Second Law of thermodynamics.

gas of mass 14g at 298K doubles its volume in (a) an isothermal reversible
expansion, (b) an isothermal irreversible expansion against p,, =0, and (c) an
adiabatic reversible expansion.

Calculate the change in the entropies of the system and the
surroundings, and the total change in entropy, when the volume of a sample
of argon gas of mass 2.9 g at 298 K increases from 120 dm’ to 4.60dm’ in (a)
an isothermal reversible expansion, (b) an isothermal irreversible expansion
against p,, = 0,and (c) an adiabatic reversible expansion.

Ina certain ideal heat engine, 10.00K] of heat is withdrawn from the
hot source at 273K and 3.00K] of work is generated. What i the temperature
of cold sink?

In an ideal heat engine the cold sink is at 0 °C. If 10.00k] of heat
is withdrawn from the hot source and 3.00k] of work is generated, at what
temperature is the hot source?

What s the efficiency of an ideal heat engine in which the hot source
is at 100°C and the cold sink is at 10°C?

Anideal heat engine has a hot source at 40 °C. At what temperature
must the cold sink be if the efficiency is to be 10 per cent?

transferred to or from the gas. (d) Explain why the work done is equal to the
difference between the heat extracted from the hot source and that deposited
in the cold sink. (c) Calculate the work done over the cycle and hence the
efficiency 1. () Confirm that your answer agrees with the efficiency given by
eqn 3A.9 and that your values for the heat involved in the isothermal stages
are in accord with eqn 3A.6.

The Carnot cycle is usually represented on a pressure-volume
diagram (Fig. 3A.8), but the four stages can equally well be represented
on temperature-entropy diagram, in which the horizontal axis is entropy
and the vertical axis is temperature; draw such a diagram. Assume that the

temperature of the hot source is T, and that of the cold sink is 7., and that the

volume of the working substance (the gas) expands from V/, to V, in the first
isothermal stage. (a) By considering the entropy change of cach stage, derive
an expression for the area enclosed by the cycle in the temperature—cntropy
diagram. (b) Derive an expression for the work done over the cycle. (Hint: Th
work done is the difference between the heat extracted from the hot source
and that deposited in the cold sink; or use eqns 3A.7 and 3A.9) (c) Comment
on the relation between your answers to (a) and (b).

e
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THERE IS A LOT OF ADDITIONAL MATERIAL ON THE WEB

e N
IMPACT 1 ...ON ENVIRONMENTAL SCIENCE: A DEEPER LOOK 2 The fugacity
The gas laws and the weather
Atvarious stages in the development of physical chemistry  In this expression, f; is the fugacity when the pressure is
it is necessary to switch from a consideration of ideal-  p, and f, is the fugacity when the pressure is p,. That is,
The biggest sample of gas readily accessible to us is the 25 ized systems to real systems. In many cases it is desirable ~ from eqn 3b,
atmosphere, a mixture of gases with the composition N to preserve the form of the expressions that have been )
summarized in Table 1. The composition is maintained 20[—\ derived for an idealized system. Then deviations from the "Vadp= RTInL 4a)
moderately constant by diffusion and convection (winds, ¢ T idealized behaviour can be expressed most simply. For 4 4
particularly the local turbulence called eddies) but the =15 g instance, the pressure-dependence of the molar Gibbs ooy o
pressure and temperature vary with altitude and with 8 \ energy of a perfect gas is ’
the local conditions, particularly in the troposphere (the 10 = N
D b o chunge), the laver extendinigup to about 11km.__ < L J GM:G”,H(TIn[ P] (12) " Vianp=RTIn 2 (ab)
\ P : ’ p

‘Impact’ sections

Impact’ sections show how physical chemistry is applied in a
variety of modern contexts. They showcase physical chemistry
as an evolving subject. www.oup.com/uk/pchem11e/

A deeper look

These online sections take some of the material in the text
further and are there if you want to extend your knowledge
and see the details of some of the more advanced derivations
www.oup.com/uk/pchem11e/

TO THE INSTRUCTOR

We have designed the text to give you maximum flexibility in
the selection and sequence of Topics, while the grouping of
Topics into Focuses helps to maintain the unity of the subject.
Additional resources are:

Figures and tables from the book

Lecturers can find the artwork and tables from the book in
ready-to-download format. These may be used for lectures

SOLUTIONS MANUALS

Two solutions manuals have been written by Peter Bolgar,
Haydn Lloyd, Aimee North, Vladimiras Oleinikovas, Stephanie
Smith, and James Keeler.

The Student’s Solutions Manual (ISBN 9780198807773)
provides full solutions to the ‘@’ Exercises and to the odd-
numbered Problems.

Group theory tables

Comprehensive group theory tables are available to download.

Molecular modelling problems

Files containing molecular modelling problems can be down-
loaded, designed for use with the Spartan Student™ software.
However they can also be completed using any modelling
software that allows Hartree-Fock, density functional, and
MP2 calculations. The site can be accessed at www.oup.com/
uk/pchemiie/.

without charge (but not for commercial purposes without
specific permission).

Key equations
Supplied in Word format so you can download and edit them.

Lecturer resources are available only to registered adopters of
the textbook. To register, simply visit www.oup.com/uk/pchem11e/
and follow the appropriate links.

The Instructor’s Solutions Manual provides full solutions
to the ‘b’ Exercises and to the even-numbered Problems
(available to download online for registered adopters of the
book only).
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CONVENTIONS

To avoid intermediate rounding errors, but to keep track of Blue terms are used when we want to identify a term in an
values in order to be aware of values and to spot numerical er-  equation. An entire quotient, numerator/denominator, is col-
rors, we display intermediate results as #n.nnn... and round the ~ oured blue if the annotation refers to the entire term, not just
calculation only at the final step. to the numerator or denominator separately.
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