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Preface

In this book, I have attempted to provide an interesting view about solar energy
production for both new and experienced scientists and engineers, as well as for
enthusiasts who have a little technical background. The book is thus not intended
to provide complete analytical discussions as a textbook would. Instead, I provide
the key concepts and results and subsequent approaches in these areas. The book is
designed for study in general for all interested thinkers to enjoy the subject without
extensive background in mathematics and physics. However, the details are pro-
vided in a concise manner and the references therein will guide the reader in the
direction toward learning more. Great effort has been made to make the book both
very recent in content and practical in approaches and subject matter. Even more
to this end, I have attempted to capture the most recent thoughts and predictions
about the effect of this field on our nation’s (and the world’s) energy economy and
market place.

In Chapter 1, the book provides a substantial introduction to the principal issues
behind the goal of increasing the use and efficiency of solar cell devices in our energy
economy. This chapter also outlines the basic types of solar cell devices and their
positive and negative characteristics presently limiting their use in real translatable
devices. This sets up chapters related to the mechanism of how present organic solar
cells work, the critical organic structures used in the devices, how we measure the
important parameters with a large variety of experimental techniques, modernization
of organic cell design, the importance of the interfaces in organic solar cell devices,
and new approaches to beat old limits to solar cells. Chapter 6 presents newer
approaches with singlet exciton fission as well as with organometallic perovskite
materials. In Chapter 7, I summarize and provide an outlook into what might be on
the horizon for this field. The goal of these chapters is to ultimately be used as a refer-
ence point for the reader to learn the basics of the topic and to be able to come back
to this topic again and remember what has already been accomplished and what are
the present limitations in the field.

After much thought, I decided to concentrate mainly on organic solar cell devices.
The field of solar development with inorganic devices as well as with silicon enjoyed
a great deal of success and attention in other well-written texts in the past. The intro-
ductory chapters briefly review some of the approaches and successes with inorganic
solar materials. The extensive reference list is straightforward and will help in find-
ing out more concerning the physics and chemistry of these organic devices.

I am very much indebted to colleagues from around the world for the detailed dis-
cussions in this field for the preparation of writing this book. I thank Professor Luping
Yu for his continued encouragement and expert advice on this subject, Professor
Victor Batista for his close attention to detail and suggestions, and Professors Peter
Green and Mike Wasielewski for their expert advice and work. Finally I would
like to thank Pamela and Bruce Epstein as well as my parents (Exie and Theodore
Goodson) for their encouragement in finishing and proofreading this book.

xiii
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'I Historical Background
and Structure of
This Book

IN THE BEGINNING

Solar energy is the oldest form of natural energy on planet Earth (Figure 1.1). Its
seemingly unlimited power has mystified cultures who have praised Ra and the
Phoenix.! Once thought too powerful or too dangerous to harness, the sun has moved
into the spotlight finally to offer a real solution to our energy needs. The use of the
sun’s heating potential can be traced back as far as the first century AD? where sun
rooms appeared in Roman architecture. And as early as the 1700s, complete designs
and construction of the first solar collectors were created in order to do actual work
as well as cook food.* Indeed, the idea of utilizing the sun’s energy for all its worth
is not new. After all, it was in 1816 that this first solar thermal electric technology
appeared, which concentrates the sun’s thermal energy in order to produce power.*
Science, ingenuity, inspiration, and timing appear to be the critical elements toward
the pioneering developments in the use of solar energy. As in many paradigm shifts
in technology, there comes a time when the summation of these elements comes to an
uplifting cadence and the world realizes the need for something new and something
better that will maintain our way of life and provide for those in the future. It has
happened before; for example, the inspiration of famine and wars has galvanized the
creation of new technology that has both saved and enlightened our way of living.
Today’s inspiration is a result of diminishing fossil fuels and the economics of a
threatening new world.’

While the idea of utilizing solar fuels is not new, the development of the materi-
als and the specific mechanisms that might ultimately provide the best solution have
come a long way since the early days of solar thermal electric technology. Indeed,
the creation and perfection of solar panels have enjoyed great success. A solar cell is
any device that directly converts the energy in light into electrical energy through the
process of photovoltaics.® The development of solar cell technology begins with the
1839 research of French physicist Antoine-César Becquerel.” Becquerel observed
the photovoltaic effect while experimenting with a solid electrode in an electrolyte
solution when he saw a voltage developed when light fell upon the electrode.” This
photovoltaic mechanism provided the much needed insight into a possible strategy
of producing useful and possibly efficient energy from the sun. It is believed that in
1883, the first functioning solar cell was made by Charles Fritts,® who used junc-
tions formed by coating selenium (a semiconductor) with an extremely thin layer of
gold. However, early solar cells had energy conversion efficiencies of less than 1%.°
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FIGURE 1.1 (See color insert.) The gods of ancient Egypt—Aten and Ra. Ra in the solar
bark. (Credit: www.shutterstock.com, 122013538.) .

In 1941, the silicon solar cell was invented by Russell OhL."" And in 1954, three
American researchers, Gerald Pearson, Calvin Fuller, and Daryl Chapin, designed a
silicon solar cell capable of a 6% energy conversion efficiency with direct sunlight.!!
This, for the first time, gave those concerned with our world’s energy economy great
attention as this suggested that with further development, silicon solar cells were
indeed a viable energy provider. In this invention, an array of several strips of silicon
(each about the size of a razorblade) placed in sunlight captured the free electrons and
turned them into electrical current.!! They had created the first solar panels. As will be
seen in this analysis of the critical points of organic solar cell technology, new materi-
als and devices are now closer to 10% efficiency with good reproducibility.’? Tt still
might be a hard sale to replace silicon. The present silicon solar cells operate in the
range of 15%—25% depending on the scale and operating conditions.” They absorb
nearly 60% of solar light and their small bandgap (1.1 eV) enables photons with
low energy (e.g., red light) to create the necessary electron—hole pairs that generate
photocurrent.”* However, the absorption of high-energy photons (blue light) results
in “hot” electrons, which are both electronically excited and thermally activated'* and
lose most of their energy as heat without contributing to electric power.'* Therefore, a
hurdle to boosting energy conversion efficiency in organic photovoltaic solar cells is
not just replacing those made from silicon, but it is also to capture the excess energy
of the thermally unrelaxed electrons before it is lost as heat.

GOALS FOR FUTURE SOLAR CELLS

In discussing the relatively broad topic of solar fuels, it is very important to know
the goals of such a massive undertaking. As discussed briefly earlier, there is a long
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FIGURE 1.2 (See color insert.) Power plant using renewable solar energy from the sun.
(Credit: www.shutterstock.com, 177900254.)

history of the use of solar energy for various important applications (Figure 1.2). So
it is necessary to specify particular goals for a modern analysis of this area. Thus,
a major goal in this undertaking is related to the development of new materials for
the construction of modern solar cells. The materials used in modern solar cells
may be divided into two parts. Historically, it has been inorganic materials that
first arrived on the scene in the construction of modern photovoltaic devices.!” The
use of molecular beani technology has allowed a great degree of success in this
methodology as it has allowed the precise deposition of the inorganic materials
on substrates to very high resolution.'® The other kind of material used in modern
solar cell development is that made of organic (made of primarily oxygen, nitrogen,
carbon, and hydrogen) systems.'” In this area of research, a virtual explosion of
interest and investments has recently come to the focus of technology. From basic
research to the translation of novel materials and devices, the area of organic solar
cells is at the penultimate step in the development of competitive and productive
materials that can one day be commercialized. Not only has the field of organic
solar cell discovery enjoyed a number of great accomplishments potentially worthy
of translating into the marketplace, but the field has developed a deeper understand-
ing of the processes and science involved in their mechanisms. In many ways, the
fruit of this knowledge has already begun to expose itself in other areas of science.'®
And the inspiring ideas and creative solutions illustrated by this basic research have
prompted a serious consideration about the possibility of this form of solar energy
consumption one day being a real alternative solution. It is because of these reasons
that a major goal of this undertaking in analyzing the developments of solar fuels
will focus primarily on organic solar materials. A close look at the developments
in this area, some failures and many successes, as well as looking to the future for
these materials will be discussed.
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MOLECULAR PROCESSES IN ORGANIC SOLAR CELLS

While the understanding of new materials is critical to one’s appreciation of where
the field of organic solar cells is heading, it is also important to discuss the criti-
cal lessons learned about the construction and engineering of these devices. The
use of selected fabrication procedures has allotted the expertise in providing rela-
tively efficient and reproducible results utilizing organic materials for solar devices.
The earliest devices with single layers of active organic solar cell materials provided
the needed standards for what was necessary in dealing with organic semiconduc-
tor solar cell materials.!” Many of these materials were organic polymers at first,
then small molecules and later other organic molecular architectures.? Later, after
much investigation, the concept of the bulk heterojunction arrived and was initially
introduced by blending two polymers having both donor and acceptor properties in
solution.?! This provided further discussions and developments in the area of mobil-
ity and diffusion of excitons and charges in such devices. The fabrication of the
films and their properties became a major obstacle. A number of techniques arrived
which would allow the coating of particular solutions to be homogeneous and pro-
vide less defects. For example, spin cast films from binary polymer solutions could
result in solid state mixtures of both polymers with good properties but could also
be optimized by the choice of polymer or particular small molecule additives.”” The
area of device and film fabrication has developed even further with other techniques
such as the lamination of two polymer layers.?* Higher power conversion efficiencies
have been reported with such devices which provide a relatively diffusive interface
between the donor and acceptor polymer structures. This field continues to expand in
its approach toward the fabrication of solar devices utilizing solar materials.

In addition to the fascinating work carried out on bulk heterojunction organic
materials, there is also considerably large effort in the field of dye-sensitized elec-
trochemical solar cells. This area has received great attention as in its initial phase of
development, there were important and very well-received accomplishments made
by scientists such as Graetzel and others.”*® The different methods have learned
from each other. For example, a number of approaches have introduced organic hole
conductors in place of the liquid electrolytes in electrochemical solar cells.?® There
has also been a push to the possible exchange of the electron-conducting accep-
tor materials in organic heterojunction devices with inorganic nanocrystals. Thus,
it appears that the electrochemical and organic photovoltaic research directions are
gradually merging together in order to provide the best possible solution. Again, this
puts great emphasis on the basic research nature of much of the work that has been
done in organic solar cells development over the past 40 years.

EXCITONS AND ORGANIC SOLAR CELLS

The goals of understanding the materials used in solar cells and their fabrication into
devices are the first steps in obtaining a basic grasp of what and where this field is at
in terms of its development. One must also understand the basic physics of how elec-
trons and holes move throughout the material and produce efficient transfer. It is well
known now that in order to create a working photovoltaic cell, the two photoactive
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FIGURE 1.3 (See color insert.) House equipped for the use of solar energy. (Credit: www.
shutterstock.com, 186664391.)

materials are sandwiched between two metallic electrodes to collect the photogen-
erated charges. Generally, one of the electrodes is metallic and the other is transpar-
ent as to allow for good solar photon capture. After the charge separation process,
the charge carriers have (o be transported to these electrodes without recombination.
Finally, it is important that the charges can enter the external circuit at the electrodes
without interface problems. Thus, it is critical to understand the four basic steps in
the solar cell function (Figure 1.3). It is now generally believed that the process of
converting light into electric current in an organic photovoltaic cell is accomplished
in four consecutive steps: (1) absorption of a photon leading to the formation of an
excited state, the electron—hole pair (exciton); (2) exciton diffusion to a region; (3)
charge separation; and (4) charge transport to the anode (holes) and cathode (elec-
trons).”” The potential energy stored within one pair of separated positive and nega-
tive charges is equivalent to the difference in their respective quasi-Fermi levels, or
in other words it corresponds to the difference in the electrochemical potentials. The
larger the quasi-Fermi level splitting that remains during charge transport through
the interfaces at the contacts, the larger will be the photovoltage.” For ideal (ohmic)
contacts, no loss is expected, and energy level offsets or band bending at nonideal
contacts (that undergo energy-level alignments due to Fermi-level differences) can
lead to a decrease in the photovoltage.” The electric current that a photovoltaic
solar cell delivers corresponds to the number of created charges that are collected
at the electrodes. This number depends on the fraction of photons absorbed (n ),



