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Introduction

Starting with the end of the seventeenth century, one of the most interesting
directions in mathematics (attracting the attention as J. Bernoulli, Euler,
Jacobi, Legendre, Abel, among others) has been the study of integrals of the

form g
yA
Ay(7) = / &

o W

where w is an algebraic function of z. Such integrals are now called abelian.

Let us examine the simplest instance of an abelian integral, one where w

is defined by the polynomial equation

w? =22 4+pz+q, (1)
where the polynomial on the right hand side has no multiple roots. In this case
the function A,, is called an elliptic integral. The value of A, is determined
up to mv; + nvy, where 1 and v, are complex numbers, and m and n are
integers. The set of linear combinations mv, +nv, forms a lattice H C C, and
so to each elliptic integral A, we can associate the torus C/H.

On the other hand, equation (1) defines a curve in the affine plane C? =
{(z,w)}. Let us complete C* to the projective plane P> = P?(C) by the
addition of the “line at infinity”, and let us also complete the curve defined
by equation (1). The result will be a nonsingular closed curve E C P? (which
can also be viewed as a Riemann surface). Such a curve is called an elliptic
curve.

It is a remarkable fact that the curve E and the torus C/H are isomorphic
Riemann surfaces. The isomorphism can be given explicitly as follows.

Let p(z) be the Weierstrass function associated to the lattice H C C.

1 1 1
="t Z [ EDYAVI 2|
2 o (z — 2h) (2h)
It is known that gp(z) is a doubly periodic meromorphic function with the
period lattice H. Further, the function p(z) and its derivative p'(z) are related
as follows:

(#')? = 4p° — 9200 — g3, 2
for certain constants g, and g3 which depend on the lattice H. Therefore,
the mapping z — (p(z), p'(z)) is a meromorphic function of C/H onto the
compactification E' C P? of the curve defined by equation (2) in the affine
plane. It turns out that this mapping is an isomorphism, and furthermore, the
projective curves E and E’ are isomorphic!

Let us explain this phenomenon in a more invariant fashion. The projection
(2,w) = z of the affine curve defined by the equation (1) gives a double
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covering w : E — P!, branched over the three roots 2, z2, z3 of the polynomial
2% + pz + ¢ and the point co.

The differential w = dz/2w, restricted to E is a holomorphic 1-form (and
there is only one such form on an elliptic curve, up to multiplication by con-
stants). Viewed as a C° manifold, the elliptic curve E is homeomorphic to the
product of two circles S' x S, and hence the first homology group H; (E, Z)
is isomorphic to Z @ Z. Let the generators of H,(E,Z) be 7, and «,. The

lattice H is the same as the lattice {m Sawtnf, w} . Indeed, the elliptic
. . . 1 -
integral A, is determined up to numbers of the form f; Toe where [ is
a closed path in C\{z1, 22, 23}. On the other hand

Nerr=r il
S SN—
/z 224+ pz+q ¥

where +y is the closed path in E covering | twice.

The integrals [ w are called periods of the curve E. The lattice H is called
the period lattice. Yi‘he discussion above indicates that the curve E is uniquely
determined by its period lattice.

This theory can be extended from elliptic curves (curves of genus 1) to
curves of higher genus, and even to higher dimensional varieties.

Let X be a compact Riemann surface of genus g (which is the same as a
nonsingular complex projective curve of genus g). It is well known that all
Riemann surfaces of genus g are topologically the same, being homeomorphic
to the sphere with g handles. They may differ, however, when viewed as
complex analytic manifolds. In his treatise on abelian functions (see de Rham
[1955]), Riemann constructed surfaces (complex curves) of genus g by cutting
and pasting in the complex plane. When doing this he was concerned about
the periods of abelian integrals over various closed paths. Riemann called those
periods (there are 3g — 3) moduli. These are continuous complex parameters
which determine the complex structure on a curve of genus g.

One of the main goals of the present survey is to introduce the reader to
the ideas involved in obtaining these kinds of parametrizations for algebraic
varieties. Let us explain this in greater detail.

On a Riemann surface X of genus g there are exactly g holomorphic 1-
forms linearly independent over C. Denote the space of holomorphic 1-forms
on X by H'?, and choose a basis w = (wy,...,w,) for H*0. Also choose a
basis v = (71,...,724) for the first homology group H;(X,Z) ~ Z29. Then

the numbers
2;; = / w;
v,

are called the periods of X. They form the period matriz 2 = (£2;;). This
matrix obviously depends on the choice of bases for H'° and H,(X,Z). It
turns out (see Chapter 3, Section 1), that the periods uniquely determine the
curve X. More precisely, let X and X' be two curves of genus g. Suppose
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w and w' are bases for the spaces of holomorphic differentials on X and X',
respectively, and - and ' be are bases for H;(X,Z) and H;(X',Z) such that
there are equalities
(vivi)x = (i) xe

between the intersection numbers of v and «'. Then, if the period matrices
of X and X' with respect to the chosen bases are the same, then the curves
themselves are isomorphic. This is the classical theorem of Torelli.

Now, let X be a non-singular complex manifold of dimension d > 1. The
complex structure on X allows us to decompose any complex-valued C*
differential n-form w into a sum

W= E: WP

pt+g=n

of components of type (p,q). A form of type (p,q) can be written as

WP = z hrgdzi, A... A dZ,‘_p ANdZj AN dZJ'qv
(1, )=(i1,0 o v8p i1 dq)

If X is a projective variety (and hence a Kiahler manifold; see Chapter 1,
Section 7) , then this decomposition transfers to cohomology:

HY(X,C) = @ HPAO,  HPY = FOP, 3)

ptg=n

This is the famous Hodge decomposition (Hodge structure of weight n on
H™(X), see Chapter 2, Section 1). It allows us to define the periods of a
variety X analogously to those for a curve. Namely, let Xy be some fixed
non-singular projective variety, and H = H™(Xy,Z). Let X be some other
projective variety, diffeomorphic to Xg, and having the same Hodge numbers
h?? = dim H??(X,). Fix a Z-module isomorphism

¢: H™(X,Z) ~ H.

This isomorphism transfers the Hodge structure (3) from H"(X, C) onto H¢ =
H ®z C. We obtain the Hodge filtration

{0}=F"*"*CF"C...CF°= H¢
of the space H¢, where
FP=H"g@...@ HP"P F**1 = {0}.

This filtration is determined by the variety X up to a GL(H, Z) action, due
to the freedom in the choice of the map ¢. The set of filtrations of a linear
space Hc by subspaces FP of a fixed dimension fP is classified by the points
of the complex projective variety (the flag manifold) F = F(f™,..., f'; Hc).
The simplest flag manifold is the Grassmanian G(k,n) of k-dimensional linear
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subspaces in C*. The conditions which must be satisfied by the subspaces
H? forming a Hodge structure (see Chapter 2, Section 1) define a complex
submanifold D of F, which is known as the classifying space or the space of
period matrices.

This terminology is easily explained. Let h?*? = dim H?'?. Further, let the
basis of H?? be {w!?}, for j = 1,...,hP9, and let the basis modulo torsion
of H,(X,Z) be m,...,7v. Consider the matrix whose rows are

5= (/ wf’q,...,/ w]-p,q).
m "

This is the period matrix of X . There is some freedom in the choice of the basis
elements w;.’ "7, but, in any event, the Hodge structure is determined uniquely
if the basis of H is fixed, and in general the Hodge structure is determined up
to the action of the group I" of automorphisms of the Z-module H. Thus, if
{X:}, i € A is a family of complex manifolds diffeomorphic to Xg and whose
Hodge numbers are the same, we can define the period mapping

$: A I\D.

We see that we can associate to each manifold X a point of the classifying
space D, defined up to the action of a certain discrete group. One of the
fundamental issues considered in the present survey is the inverse problem —
to what extent can we reconstruct a complex manifold X from the point in
classifying space. This issue is addressed by a number of theorems of Torelli
type (see Chapter 2, Section 5 for further details).

A positive result of Torelli type allows us, generally speaking, to construct
a complete set of continuous invariants, uniquely specifying a manifold with
the given set of discrete invariants. Let us look at the simplest example — that
of an elliptic curve E. The two-dimensional vector space Hec = H(E,C) is
equipped with the non-degenerate pairing

() =/Eu/\n-

Restricting this pairing to H = H!(E,Z) gives a bilinear form
Qu:-HxH-=1Z,

dual to the intersection form of 1-cycles on E. We can, furthermore, pick a
basis in H, so that
0 -1

Hg is also equipped with the Hodge decomposition
He = Cw + Cw,

where w is a non-zero holomorphic differential on E. It is easy to see that
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v-1(w,@) >0,
and so in the chosen basis w = (a, 8), where
v-1(8a — aB) > 0. 4)

The form w is determined up to constant multiple. If we pick w = (A, 1), then
condition (4) means that Im A > 0, and so the space of period matrices D is
simply the complex upper half-plane:

D={zeC|Imz > 0}.
Now let us consider the family of elliptic curves
E\=C/{ZA+Z}, XeD.

This family contains all the isomorphism classes of elliptic curves, and two
curves E) and E): are isomorphic if and only if

_ar+b
T e+ d

AI

where ((cl Z) € SLo(Z).

Thus, the set of isomorphism classes of elliptic curves is in one-to-one cor-
respondence with the points of the the set A = I'\D. The period mapping

&:A-I\D

is then the identity mapping. Indeed, the differential dz defines a holomorphic
1-form in each E,.

If v1, 7y, is the basis of Hy(E),Z) generated by the elements A, 1 generating
the lattice {ZA + Z} then the periods are simply

(Llw,L2w> ={\1).

The existence of Hodge structures on the cohomology of non-singular pro-
jective varieties gives a lot of topological information (see Chapter 1, Section
7). However, it is often necessary to study singular and non-compact vari-
eties, which lack a classical Hodge structure. Nonetheless, Hodge structures
can be generalized to those situations also. These are the so-called mized
Hodge structures, invented by Deligne in 1971. We will define mixed Hodge
structures precisely in Chapter 4, Section 1, but now we shall give the simplest
example leading to the concept of a mixed Hodge structure.

Let X be a complete algebraic curve with singularities. Let S be the set
of singularities on X and for simplicity let us assume that all points of S
are simple singularities, with distinct tangents. The singularities of X can be

resolved by a normalization m : X — X. Then, for each point s € S the
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pre-image 7~ 1(s) consists of two points z; and z., and outside the singular

set the morphism ~
7: X\771(S) = X\S

is an isomorphism.

X2

Fig. 1

For a locally constant sheaf Cx on X we have the exact sequence
0—>Cx »mCgz +Cs—0,
which induces a cohomology exact sequence

0 —» H°%X,Cs) — HY(X,Cx) —» HYX,mCg) — 0

I i
H®(S,Cs) HY(X,Cgx)

This sequence makes it clear that H'(X,Cyx) is equipped with the filtration
0 C H%°S,Cs) = Wy C H(X,Cx) = Wi. The factors of this filtration
are equipped with Hodge structures in a canonical way — W, with a Hodge
structure of weight 0, and W, /Wy with a Hodge structure of weight 1, induced
by the inclusion of W, /W, into H'(X,Cx).

Even though mixed Hodge structures have been introduced quite recently,
they helped solve a number of difficult problems in algebraic geometry — the
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problem of invariant cycles (see Chapter 4, Section 3) and the description
of degenerate fibers of families of of algebraic varieties being but two of the
examples. More beautiful and interesting results will surely come.

Here is a brief summary of the rest of this survey.

In the first Chapter we attempt to give a brief survey of classical results
and ideas of algebraic geometry and the theory of complex manifolds, neces-
sary for the understanding of the main body of the survey. In particular, the
first three sections give the definitions of classical algebraic and complex ana-
lytic geometry and give the results GAGA (Géometrie algébrique et géométrie
analytique) on the comparison of algebraic and complex analytic manifolds.

In Sections 4, 5, and 6 we recall some complex analytic analogues of some
standard differential-geometric constructions (bundles, metrics, connections).

Section 7 is devoted to classical Hodge theory.

Sections 8, 9, and 10 contain further standard material of classical algebraic
geometry (divisors and line bundles, characteristic classes, extension formu-
las, Kodaira’s vanishing theorem, Lefschetz’ theorem on hyperplane section,
monodromy, Lefschetz families).

Chapter 2 covers fundamental concepts and basic facts to do with the
period mapping, to wit:

Section 1 introduces the classifying space D of polarized Hodge structures
and explains the correspondence between this classifying space and a polar-
ized algebraic variety. We study in some depth examples of classifying spaces
associated to algebraic curves, abelian varieties and Kahler surfaces. We also
define certain naturally arising sheaves on D.

In Section 2 we introduce the complex tori of Griffiths and Weil associated
to a polarized Hodge structure. We also define the Abel-Jacobi mapping, and
study in detail the special case of the Albanese mapping.

In Section 3 we define the period mapping for projective families of complex
manifolds. We show that this mapping is holomorphic and horizontal.

In Section 4 we introduce the concept of variation of Hodge structure, which
is a generalization of the period mapping.

In Section 5 we study four kinds of Torelli problems for algebraic vari-
eties. We study the infinitesimal Torelli problem in detail, and give Griffiths’
criterion for its solvability.

In Section 6 we study infinitesimal variation of Hodge structure and explain
its connection with the global Torelli problem.

In Chapter 3 we study some especially interesting concrete results having
to do with the period mapping and Torelli-type results.

In Section 1 we construct the classifying space of Hodge structures for
smooth projective curves. We prove the infinitesimal Torelli theorem for non-
hyperelliptic curves and we sketch the proof of the global Torelli theorem for
curves.

In Section 2 we sketch the proof of the global Torelli theorem for a cubic
threefold.
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In Section 3 we study the period mapping for K3 surfaces. We prove the
infinitesimal Torelli theorem. We construct the modular space of marked K3
surfaces. We also sketch the proof of the global Torelli theorem for K3 surfaces.
We study elliptic pencil, and we sketch the proof of the global Torelli theorem
for them.

In Section 4 we study hypersurfaces in P™. We prove the local Torelli the-
orem, and sketch the proof of the global Torelli theorem for a large class of
hypersurfaces.

Chapter 4 is devoted to mixed Hodge structures and their applications.

Section 1 gives the basic definitions and survey the fundamental properties
of mixed Hodge structures.

Sections 2 and 3 are devoted to the proof of Deligne’s theorem on the exis-
tence of mixed Hodge structures on the cohomology of an arbitrary complex
algebraic variety in the two special cases: for varieties with normal crossings
and for non-singular incomplete varieties.

Section 4 gives a sketch of the proof of the invariant cycle theorem.

Section 5 computes Hodge structure on the cohomology of smooth hyper-
surfaces in P".

Finally, in Section 5 we give a quick survey of some further developments of
the theory of mixed Hodge structures, to wit, the period mapping for mixed
Hodge structures, and mixed Hodge structures on the homotopy groups of
algebraic varieties.

In Chapter 5 we study the theory of degenerations of families of algebraic
varieties.

Section 1 contains the basic concepts of the theory of degenerations.

Section 2 gives the definition of the limiting mixed Hodge structure on the
cohomology of the degenerate fiber (introduced by Schmid).

In Section 3 we construct the exact sequence of Clemens-Schmid, relating
the cohomology of degenerate and non-degenerate fibers of a one-parameter
family of Kéhler manifolds.

Sections 4 and 5 are devoted to the applications of the Clemens-Schmid
exact sequence to the degenerations of curves and surfaces.

In Section 6 we study the degeneration of K3 surfaces. We conclude that
the period mapping is an epimorphism for K3 surfaces.

In conclusion, a few words about the prerequisites necessary to understand
this survey. Aside from the standard university courses in algebra and differen-
tial geometry it helps to be familiar with the basic concepts of algebraic topol-
ogy (Poincaré duality, intersection theory), homological algebra, sheaf theory
(sheaf cohomology and hypercohomology, spectral sequences — see references

Cartan-Eilenberg [1956], Godement [1958], Grothendieck [1957], Griffiths-
Harris [1978]), theory of Lie groups and Lie algebras (see Serre [1965]), and
Riemannian geometry (Postnikov [1971]).

We have tried to either define or give a reference for all the terms and results

used in this survey, in an attempt to keep it as self-contained as possible.
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Chapter 1
Classical Hodge Theory

§1. Algebraic Varieties

Let us recall some definitions of algebraic geometry.

1.1. Let C* = {z = (21,..., 2n)|2: € C} be the n-dimensional affine space
over the complex numbers. An algebraic set in C* is a set of the form

V(fi,.- i fm) ={z € C*fi(2) = ... = fm(2) = 0}.

where f;(2) lie in the ring C[z] = C[z, ..., z,] of polynomials in n variables
over C. An algebraic set of the form V(f;) is a hypersurface in C*, assuming
that fi(z) is not a constant. )

It is clear that if f(z) lies in the ideal I = (fi,..., fm) of C[z] generated
by fi(2),..., fm(z) then f(a) = 0 for all a € V(fi,..., fm). Thus, to each
algebraicset V = V(f1,..., fm) we can associate an ideal I(V') C C[z], defined
by

I(V)={f e (z]|f(a) =0,a € V}.

The ideal I(V) is a finitely generated ideal, and so by Hilbert’s Nullstel-
lensatz (Van der Waerden [1971)) I(V) = /(f1,---, fm),, where VJ = {f €
C[2]|f* € J for some k € N} is the radical of J. .

The ring C[V] = C[2]/I(V) is the ring of regular functions over the alge-
braic set V. This ring coincides with the ring of functions on V which are
restrictions of polynomials over C*.

1.2. It is easy to see that the union of any finite number of algebraic sets
and the intersection of any number of algebraic sets is again an algebraic
set, and so the collection of algebraic sets in C* satisfies the axioms of the
collection of closed sets of some topology. This is the so-called Zariski topology.
The Zariski topology in C* induces a topology on algebraic sets V C C*, and
this is also called the Zariski topology. The neighborhood basis of the Zariski
topology on V is the set of open sets of the form Uy, ;, = {a € V|fi(a) #
01"'5fk(a) ?ﬁ val)-"7fk € C[V]}

Let Vi € C* and V; € C™ be two algebraic sets. Amap f: V} = V,
is called a regular mapping or a morphism if there exists a set of m regular
functions fi,..., fm € C[V1] such that f(a) = (fi(a),-.., fm(a)) for all a €
V1. Obviously a regular mapping is continuous with respect to the Zariski
topology. It is also easy to check that defining a regular mapping f: V) — V,
is equivalent to defining a homomorphism of rings f* : C[V;] - C[V], which
transforms the coordinate functions z; € C[V;] into f; € C[V;].

Two algebraic sets V1 and V;, are called isomorphic if there exists a regular
mapping f : Vi — V2 which possesses a regular inverse f~! : V, = V.
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Alternatively, V1 and V, are isomorphic whenever the rings C[V;] and C[V;]
are isomorphic.

Evidently, for any algebraic set V, the ring of regular functions C[V] is
a finitely generated (over C) algebra. Conversely, if a commutative ring K
is a finitely generated algebra over C without nilpotent elements, then K is
isomorphic to C[V'] for some algebraic set V. Indeed, if 21, . . ., z, are generators
of K, then K ~ C[z;,...,2,]/1, where I is the ideal of relations. Thus, K ~
C[V], where V = {z € C*|f(z) = 0,f € I}. In other words, the category
of algebraic sets is equivalent to that of finitely generated algebras over C
without nilpotent elements.

1.3. A product of algebraic sets V C C* and W C C™ is the set
VxW = {(21,- s 2n+m) € CF™|(21,...,2n) € V,(Znt1,- - »Zntm) € W}.

It is easy to check that V' x W is an algebraic set, and if fi(21,...,2,), 1 <
i < k are generators of I(V) and g;(z1,...,2m), 1 < j < s are gener-
ators of I(W), then V x W is defined by the equations fi(z1,...,2,) =
01 gj(zn+1a AR ,Zn+m) =0.

1.4. An algebraic set V is called irreducible if I(V') is a prime ideal. An
algebraic set V is irreducible if V' cannot be represented as a union of closed
subsets V1 UV, such that V # V1,V # V,, ) # Va. It can be shown (Shafare-
vich [1972]) that every algebraic set is a union of a finite number of irreducible
algebraic sets.

If V is an irreducible algebraic set, then C[V] is an integral domain. De-
note the field of quotients of C[V] by C(V'). This field is called the field of
rational functions over V, and the transcendence degree of C(V') over C is the
dimension of V, and is denoted by dim V. Elements of C(V') can be repre-
sented as fractions f(z)/g(z) where f(z),g(z) € C(z) and g(z) doesn’t vanish
on all of V. Thus the elements of C(V') can be viewed as functions defined on
a Zariski-open subset of V.

For each point a € V of an irreducible algebraic set V we define the local
ring Ov,a C C(V) :

Oy = {g € CV)If,g € OV), 9(a) # 0} .
The maximal ideal my,, C Oy, is
iy = {g € CV)If,9 € CIV], £(a) = 0, 9(a) # o} .

In general, for any point a of an arbitrary (not necessarily irreducible) alge-
braic set V' we can also define the local ring as a ring of formal fractions:

Ove = {i—lf,g € C[V),g(a) # 0} )



Periods of Integrals and Hodge Structures 13

with the usual arithmetic operations. Two fractions fi/g: and f2/gs are
considered equal if there exists a function h € C[V],h(a) # 0 such that
h(fi192 — fag1) = 0. ‘

The local rings Oy, are the stalks of a sheaf of rings Ov over V, de-
fined as follows. The sections of the sheaf Oy over an open set U C V are
fractions f/g, f,g € C[V], such that for every a € U there exists a fraction
fa/9a,90(a) # 0, which is equal to f/g at a. That is, there exists a function
ha € C[V], ha(a) # 0, such that

ha(fga — fag) =0.

This sheaf of rings Oy is called the structure sheaf, and its sections over
an open set U are called functions regular over U. Hilbert’s Nullstellensatz
implies that the ring of global sections of Oy coincides with C[V'].

1.5. To each point a = (a;,...,an) € V C C* we associate a linear space
called the tangent space Tv,. The tangent space Ty, is defined to be the
subspace of C", defined by the system of equations

> @) -a) =0
i=1

for all f € I(V). It can be shown that dim Ty,, > dim V for an irreducible V,
and furthermore there is a non-empty Zariski-open subset U C V, such that
dimTy, = dimV for all a € U. This set U is defined to be the set of a € V
where the rank of the matrix (g{;) is maximal (where I(V) = (f1,..., fm))-

Let V; be an irreducible component of an algebraic set V. The points a € V;
for which dim Ty, = dim V; are called non-singular (or smooth) points of V.

The tangent space Tv,, can be defined an yet another way, as the dual space
of the C-linear space my,q/m}, ,. Indeed, for every function h = f(z)/h(z) €
Ovy,, define the differential

"~ 8h
doh = Zl -c'?_z,»(zi — a;).

This differential satisfies the conditions
da(hl + h2) = dahl + dah2 (1)

and
d, (hl h2) =h (a)dahz + hz(a)dahl . (2)

Since d,(c) = 0 for ¢ a constant function, the differential d, is actually de-
termined by its values on my,. For every h € my, d,h determines a linear
function d,h : Ty, — C. From equation (2) it follows that d,h = 0 for any
h € m%, .. Thus d, defines a mapping d, : my,e/m%, = Ty ,. This map is
easily checked to be an isomorphism.
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Let V € C*. Consider an algebraic set Ty € C>* = C" x C* defined by the
equations
flz1,...2,) =0,
n
g

2 gzii(zl, N ,Zn)(ZH.n - Z,;) = 0,
for f € I(V). Let 7 be the projection map 7 : Ty — V, where 7(z1,...,22,) =
(21,...,2n). Evidently n(Ty) = V and 7~ (a) = Tv,, for any a € V. Thus Ty
fibers over V, with fibers being just the tangent spaces at the points a € V.
The algebraic set Ty is the tangent bundle to V.

1.6. Algebraic Varieties The concept of algebraic variety is central to alge-
braic geometry, and there are several ways to define this. The most general
approach is that of Grothendieck (see Shafarevich [1972], Hartshorne [1977]),
where an algebraic variety is defined to be a reduced separable scheme of fi-
nite type over a field k. Since we will not need such generality, we will follow’
A. Weil, and define an algebraic variety to be a ringed space, glued together
from algebraic sets. Recall that a ringed space is an ordered pair (X,Ox),
where X is a topological space and Ox is a sheaf of rings. A morphism of
ringed spaces f : (X,0Ox) — (Y, Oy) is a continuous map f : X — Y together
with a family of ring homomorphisms f; : Oy [U = Ox|f~}(U) for all open
sets U C Y, which agree on intersections of open sets.

An affine variety is a ringed space (V,Oy) where V is an algebraic set
and Oy is its structure sheaf. Note that for an affine variety V, the open sets
(which are a neighborhood basis in the Zariski topology) of the form

Us ={z € VIf(2) # 0},

where f is a function regular on V are affine varieties. Indeed, if V C C",
then Uy is isomorphic to the algebraic set in C**! defined by the equa-
tions zn4+1f(21,...,2n) = 1 and fi(21,...,2,) = 0, where fi(z) € I(V) C
C[Zl goon ,zn].

Definition. A ringed space (X, Ox) is an algebraic variety if X can be cov-
ered by a finite number of open everywhere-dense sets V;, so that (V;, Ox|V;)
are isomorphic to affine varieties and X is separable: the image of X under
the diagonal embedding A = (id,id) : X = X x X is closed in X x X. (The
definition of a product of affine algebraic sets can be naturally extended to
ringed spaces).

Ezample Projective space P™. Let P™ be the set of all the lines through
the origin in C**!. Let us give P" the structure of an algebraic variety. To
do this, note that a line I C C**! is uniquely determined by a point u =
(uo,...,un) €l,u # 0. The points u and Au = (Au,..., \u,) define the same
line. Thus

P* = {u € C*"' }\ {0}/ (u ~ du, A #0).



