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Preface

This book is a revised and updated version, including a substantial portion
of new material, of J. D. Cole’s text Perturbation Methods in Applied Mathe-
matics, Ginn-Blaisdell, 1968. We present the material at a level which assumes
some familiarity with the basics of ordinary and partial differential equations.
Some of the more advanced ideas are reviewed as needed ; therefore this book
can serve as a text in either an advanced undergraduate course or a graduate
level course on the subject.

The applied mathematician, attempting to understand or solve a physical
problem, very often uses a perturbation procedure. In doing this, he usually
draws on a backlog of experience gained from the solution of similar examples
rather than on some general theory of perturbations. The aim of this book is
to survey these pertubation methods, especially in connection with differential
equations, in order to illustrate certain general features common to many
examples. The basic ideas, however, are also applicable to integral equations,
integrodifferential equations, and even to difference equations.

In essence, a perturbation procedure consists of constructing the solution
for a problem involving a small parameter ¢, either in the differential equation
or the boundary conditions or both, when the solution for the limiting case

= 0 is known. The main mathematical tool used is asymptotic expansion
with respect to a suitable asymptotic sequence of functions of ¢.

In a regular perturbation problem a straightforward procedure leads to
an approximate representation of the solution. The accuracy of this approxi-
mation does not depend on the value of the independent variable and gets
better for smaller values of ¢&. We will not discuss this type of problem here
as it is well covered in other texts. For example, the problem of calculating
the perturbed eigenvalues and eigenfunctions of a self adjoint differential
operator is a regular perturbation problem discussed in most texts on differ-
ential equations.
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Rather, this book concentrates on singular perturbation problems which
are very common in physical applications and which require special tech-
niques. Such singular perturbation problems may be divided into two broad
categories: layer-type problems and cumulative perturbation problems.

In a layer-type problem the small parameter multiplies a term in the
differential equation which becomes large in a thin layer near a boundary
(e.g., a boundary-layer) or in the interior (e.g., a shock-layer). Often, but not
always, this is the highest derivative in the differential equation and the
& = 0 approximation is therefore governed by a lower order equation which
cannot satisfy all the initial or boundary conditions prescribed. In a cumu-
lative perturbation problem the small parameter multiplies a term which
never becomes large. However, its cumulative effect becomes important for
large values of the independent variable. In some applications both categories
occur simultaneously and require the combined use of the two principal
techniques we study in this book.

This book is written very much from the point of view of the applied
mathematician; much less attention is paid to mathematical rigor than to
rooting out the underlying ideas, using all means at our disposal. In particular,
physical reasoning is often used as an aid to understanding a problem and to
formulating the appropriate approximation procedure.

The first chapter contains some background on asymptotic expansions.
The more advanced techniques in asymptotics such as the methods of steepest
descents and stationary phase are not covered as there are excellent modern
texts including these techniques which, strictly speaking, are not perturbation
techniques. In addition, we introduce in this chapter the basic ideas of limit
process expansions, matching asymptotic expansions, and general asymptotic
expansions.

Chapter 2 gives a deeper exposition of limit process expansions through a
sequence of examples for ordinary differential equations. Chapter 3 is
devoted to cumulative perturbation problems using the so-called multiple
variable expansion procedure. Applications to nonlinear oscillations, flight
mechanics and orbital mechanics are discussed in detail followed by a survey
of other techniques which can be used for this class of problems.

In Chapter 4 we apply the procedures of the preceding chapters to partial
differential equations, presenting numerous physical examples. Finally,
the last chapter deals with a typical use of asymptotic expansions, the con-
struction of approximate equations; simplified models such as linearized
and transonic aerodynamics, and shallow water theory are derived from
more exact equations by means of asymptotic expansions. In this way the
full meaning of laws of similitude becomes evident.

The basic ideas used in this book are, as is usual in scientific work, the
ideas of many people. In writing the text, no particular attempt has been
made to cite the original authors or to have a complete list of references and
bibliography. Rather, we have tried to present the “state of the art™ in a
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systematic manner starting from elementary applications and progressing
gradually to areas of current research.

For a deeper treatment of thé fundamental ideas of layer-type expansions
and related problems the reader is referred to the forthcoming book by P. A.
Lagerstrom and J. Boa of Caltech.

To a great extent perturbation methods were pioneered by workers in
fluid mechanics and these traditional areas are given full coverage. Appli-
cations in celestial mechanics, nonlinear oscillations, mathematical biology,
wave propagation, and other areas have also been successfully explored since
the publication of J. D. Cole’s 1968 text. Examples from these more recent
areas of application are also covered.

We believe that this book contains a unified account of perturbation
theory as it is understood and widely used today.

Fall 1980 J. Kevorkian
J. D. Cole
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Chapter 1

Introduction

1.1 Ordering

We will use the conventional order symbols as a mathematical measure of
the relative order of magnitude of various quantities. Although generaliza-
tions are straightforward, we need anly be concerned with scalar functions
of real variables. In the definitions which follow ¢, i, etc. are scalar functions
of the variable x (which may be a vector) and the scalar parameter ¢. The
variable x ranges over some domain D and ¢ belongs to some interval 1.

Large O

Let x be fixed. We say ¢ = O(y) in / if there exists a k(x) such that |¢| <
k(x)|y| for all ¢ in I. Similarly, if &, is a limit point in | we say that ¢ = O(y)
as ¢ — & if there exists a k(x) and a neighborhood N of &, such that |¢| <
k(x)|¢| for all ¢ in the intersection of N with I.

We note that if y does not vanish in I then the inequality in the above two
definitions simply reduces to the statement that ¢/ is bounded.

Small o

Again with x fixed, we say ¢ = o(y/) as £ — ¢, if given any d(x) > 0, there
exists a neighborhood N of ¢, such that |¢| < (x)|y| for all ¢ in N;. Here
also the definition simplifies to the statement that (¢/i) > 0if  # 0 in I.
Often, ¢ < ¥ is used as an equivalent notation. '

Uniformity

As indicated in the above definitions the quantities k, 6 and the neighbor-
hoods N, N, will, in general, depend on the value of x. If, however k, 8, N, N;
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can be found independently of the value of x we say that the order relations
hold uniformly in D. To illustrate these ideas consider the following examples.
In all cases x will be a real variable, the domain D will be the half-open unit
interval 0 < x < 1 and I will be the half-open interval 0 < ¢ < p < 1 with

By =
(1) x 4+ ¢=0(1) in I, uniformly in D. (1.1.1)
(i) log(sin ex) = O(log 2¢ex/=n) in I, uniformly in D. (1.1.2)

This follows from the fact that 0 < 2z/nr <sinzforall0 <z < 1.
Since 0 < ex < 1 always, the inequality in the definition holds with
k=1

1
X+ &

(ii1) =0(1) inl (1.1.3)

The statement is true because 1/(x + ¢) < 1/x for any given x and
all ¢ in I; thus k(x) = 1/x. Now, it is clear that the statement (1.1.3) is
not uniformly valid in D because there is no finite constant k for which
the required inequality holds for all x in D so long as x is allowed to
approach the origin.

For similar reasons the statement ¢/x(1 — x) = O(¢) in I is not
uniformly validin 0 < x < 1.

(>iv) £ = 0(*) in I forany a > B. (1.1.4)

This result is trivially true since £~ # is bounded. In fact, it tends to zero
for « > B, and this is a reminder that the O symbol does not connote
equality of order of magnitude but only provides a one-sided bound.

V) sin ;—‘ = 0(x) ase—0. - (1.15)

Here, even though the limit as ¢ — 0 of sin(x/¢) does not exist for
any x # 0, it is clear that |sin x/¢| < 1 for any x in D. Therefore, (1.1.5)
is true with k(x) = 1/x and the statement is not uniformly valid.
However, the statement sin x/¢ = O(1) as ¢ — 0 is uniformly valid in D.

(vi) =0 ase—-0ifa> B (1.1.6)
(vii) - g loge=o0(l) ase— 0foranya > 0. (1.1.7)
(viii) e ¥ =o(ef) ase—Oforany p> 0ifx > 0. (1.1.8)

Clearly, the statement (1.1.8) is not uniformly valid, even in the half-open
interval 0 < x < 1, and if x = 0 the statement is false.

Various operations such as addition, multiplication and integration can
be performed with the order relations. In general, differentiation of order
relations with respect to & or x is not permissible. For these and further results
the reader may consult Reference 1.1.1.
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Reference

1.1.1 A. Erdelyi, Asymptotic Expansions, Dover Publications, New York, 1956.

1.2 Asymptotic Sequences and Expansions

Consider a sequence ‘{¢,,(s)} n = 1,2,...of functions of &. Such a sequence is
called an asymptotic sequence if

On+1(€) = 0(¢,(e)) ase— g (1.2.1)

foreachn=1,2,...

- If the sequence is infinite and ¢,, , = o(¢,) uniformly in n (i.e., the choice
of 4 and N in the definition given in Section 1.1 does not depend on n) the
sequence is said to be uniform in n. Similarly if the ¢, also depend on a variable
x one can have uniformity with respect to x in some domain D. Some ex-
amples of asymptotic sequences are

Ou(e) = (6 — &p)", ase— &g (1.2.2)
due) = €€, ase— 0,4y > 4, (1.2.3)
¢o = log e, ¢, =1, ¢, = eloge, ¢33 =¢
=¢*log’e, ps=¢*loge, Pg=¢%..., (1.2.4)
ase— 0.

Here again various operations, such as multiplication of two sequences
or integration can be used to generate a new sequence. Differentiation with
respect to ¢ may not lead to a new asymptotic sequence. For more details the
reader may use Reference 1.1.1.

A sum of terms of the form Y\, a,(x)¢,(¢) is called an asymptotic ex-
pansion of the function f(x, €) to N terms (N may be infinite) as ¢ — ¢, with
respect to the sequence {¢,(¢)} if

M

f(66) = Y a,(x)bu(e) = o(bp) as e — g (1.2.5)

.foreachM =12,...,N.
If N = oo, the following notation is generally used

f(x,8) ~ Z a,(x)p.(e) ase— g,. (1.2.6)
Clearly, an equivalent definition for an asymptotic expansion is that
M-1
f8) = Y a(x)u(e) = O(dy) ase— e, (1.2.7)

n=1

foreach M =2,..., N
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An asymptotic expansion is said to be uniformly valid in some domain
D in x if the order relations in (1.2.5) or (1.2.7) hold uniformly.

Given a function f(x, €) and an asymptotic sequence {¢,(¢)}, one can
uniquely calculate each of the a,(x) defining the asymptotic expansion of
f(x, ¢) by repeated application of the definition (1.2.5). Thus,

-3 f (% o) J
a,(x) = ,IT:, ‘¢:(8) (1.2.8a)
i 1668 — 0,90,62)
a,(x) = rll—'cn — _¢z(f) (1.2.8b)
a(x) = lim i L dn(r; W)ule) (1.2.8¢)

For example f(x, £) = (x + ) '/? has the expansion

oo (_lnl -l

(x + ¢) "2~"§1W1)' [_[|2k—3|~(—,; 2 (1.2.9)
as ¢ — 0, with respect to the sequence {¢"~'}. This is also the Taylor series
expansion of (x + &)~ "2 near ¢ = 0 and is convergent for & < |x|. Note
also that the expansion (1.2.9) is not uniformly valid in any domain in x for
which x = 0 is a limit point.

A less trivial situation occurs if f(x, ¢) is defined by an integral representa-
tion. Consider, for example, the Error function defined by

erffe =1 — —-f “dr (1.2.10a)
which by setting t* = t can also be written as

erffe=1— —j e 't V2 gy (1.2.10b)

We note that after integration by parts once (1.2.10b) becomes

and this suggests repeating the process in order to generate an expansion in

increasing powers of ¢~ . If such an expansion were asymptotic in the limit

& — o0, it would be useful for numerical evaluation of erf ¢ for ¢ large.
Defining

F,(e) = J‘ i Al n=0,1,2,... (1.2.11)
£2
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and integrating F,(z) by parts results in the recursion relation

e (2n+1)
£2ﬂ+l FT 2

F(e) = F,(e), n=0,1,2.... (1212)

and this can be used to calculate the following exact result for F,,

_e| 1 1 1.3 (=1)""'1.3.5...2n - 3)
g [;“? et 2T
+(—l)"1'3'5"'(2n—I)F,,(s), n=12...

2’!

(1.2.13)

Thus, (1.2.13) exhibits a formal series in ascending powers of ¢! and an

exact expression for the remainder if the series is truncated after n terms. To

show that the bracketed expression in (1.2.13) is the asymptotic expansion of
F,, we must verify that (1.2.5) is satisfied, i.e., that

M —
Fole) — e @Y (—1)~! 1‘3';_';;2(?1 D _ oMy (12.14)
n=1

as ¢ — oo.

According to (1.2.13), the above reduces to showing that S,,(¢) defined by

am—y (mDM1.3.5...2M - 1)
2M

Sule) =¢ Fy(e) (1.2.15)

tends to zero as &€ — oo.
This is easily accomplished once we note that

—g2

Fu(e) < *% J:e_' & = ey (1.2.16)
Therefore,
|Su(e)| < 1'3'5‘2';,122'" =D - (1.2.17)
and hence S,; = o(1) as ¢ » 0.
We note that the asymptotic expansion
erf£~1_e“‘2 i (=1)""'1.3.5...2n — 3) (1.2.18)

\/7_In=l 2n—1£2n—l

is divergent because the numerical value of the coefficients of ¢~2"*! in the
series (1.2.18) becomes large as n increases. Actually, (1.2.13) provides an
exact expression for the error resulting from using M terms of the expansion
(1.2.18) to represent erf ¢. It is easily verified that for any fixed ¢ there is an
optimal integer M in the sense that the error is a decreasing function of the
number n of terms retained, as long as n < M. But, if one insists on retaining



6 1 Introduction

n > M, terms, the error will increase with n. Moreover, M, increases with ¢
and the error oi the series with M, terms decreases as ¢ increases. The above
features are typical of divergent asymptotic expansions.

The reader may verify that for ¢ = 2 the series on (1.2.18) gives the best
accuracy if 5 terms arz used and that the error in this case is only 6.43 x 1077,
which is remarkable since ¢ = 2 is not a large number.

Functions defined by integral representations also occur naturally in
the solution of linear problems by transform techniques. Various methods
have been developed for calculating the asymptotic behavior of such results.
A discussion of this topic is beyond the scope of this book. The reader will
find an excellent account in Reference 1.2.1.

PROBLEMS
1. Calculate the asymptotic behavior as r — x for the initial value problem

d*y 1
+y=-, n<t<x (1.2.19)

S

by two methods.
(a) First, calculate the solution in integral form and use repeated integrations by
parts.
(b) Next, observe that
' S o
y=asint+bcost+ Y F (1.2.21)

n=1

is formally. a general solution for appropriate C,. Determine the constants a, b,
and the C, and compare your results with those in part (a). Is this asymptotic
expansion convergent?

ta

. Noting that the nonlinear equation

d*y 1
— —siny= —- 22
i sin y = 5 (1.2.22)
has the energy integral
1 (dy\? iy 12.23)
3\ar + cos y + o const. (1.22

calculate the first five terms of the asymptotic expansion of the solution of (1.2.22)
ast — « for the initial value problem
w0) =0

dy(0)
dr .
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Reference

1.2.1 G. F. Carrier. M. Krook and C. E. Pearson, Functions of a Complex Variable,
Theory and Technigue, McGraw-Hill Book Company, New York, 1966.

1.3 Limit Process Expansions, Matching, General
Asymptotic Expansions

Another possible way of defining a function f(x, ¢) is as the solution of a
differential equation in which x is the independent variable and ¢ occurs as a
parameter. If one cannot solve this differential equation for arbitrary ¢ (as, for
example, if the differential equation is nonlinear with ¢ # 0) can one calculate
the asymptotic expansion of the solution by considering a sequence of
simpler differential equations governing each term of this expansion? This is
the perturbation idea which will be explored in depth in subsequent chapters.
‘Here, we consider a simple examp!e to introduce some ideas.
The first-order equation

dy — e[x(e — 1) + e2]e ™

3 0<x<o0,0<e<x1

d & .
® i) (1.3.1)
y(0) =0 (1.3.2)
has the exact solution
y =‘f(x, g =e ¥~ e (1.3.3)

x+e

Ignoring temporarily the origin of eq. (1.3.3), we see that f(x, ¢) defines a
well behaved function, and it is interesting to consider the asymptotic
expansion of this function as ¢ — 0. If we fix x to be some pusitive value and
apply the limit process defined by egs. (1.2.8) with ¢,(e) = &" we find the fol-
lowing expansion for f, called an “outer” expansion

f= —z-:eT +£2‘;2 —8323 + 0(e*)
N
= ¥ &hy(x) + 0 Y) (1.3.4)

n=0

and the contribution of the e™** term is smaller than any term in the series
in (1.3.4). We shall refer to such a term as a “transcendentally small” term
(abbreviated as T.S.T.) in this limit.

Clearly (1.3.4) is not uniformly valid near x = 0. In fact, it is singular
there, and this expansion is not a good approximation of the function defined
by (1.3.3) no matter how small ¢ is if we allow x also to become small.
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It is therefore natural to seek another expansion of (1.3.3) which ade-
quately approximates this function near x = 0. Since the combination x/e
occurs in the first term one is led to the change of variables x* = x/g

e—tx'

x4 1

y=gkx*,e)=e (1.3.5)

With x* = x/¢(1.3.5) defines the same function as f. However, the asymptotic
expansion of g with x* fixed as ¢ — 0 is quite different. It is easy to see that in

this limit y has the expansion which will be referred to as the “inner” ex-
pansion

panjlipt- - 1 1 ex* g2x*? N g3 x*3 + 06
g=¢ X+ 1 x 41 20+ 1) 6(x* + 1)
N
= Y £g,(x*) + O(x*N* 1), (1.3.6)
n=0

Now, this expansion is accurate for small x. In particular, the condition
y = 0 at x = x* = 0 is satisfied. However, the result fails to be uniformly
valid for x* large. Thus, the two expansions (1.3.4) and (1.3.6) have mutually
exclusive domains of validity. Hence, depending on the magnit. e of x
compared to ¢ one expansion or the other should be used.

Several related questions now arise.

(1) Equation (1.3.4) and (1.3.6) give the expansions of the same function by
different limit processes. Is there another limit process expansion which
is contained in both expansions?

(i) Is it possible to find one asymptotic expansion which is uniformly valid
for all x > 0?

(ili) Can one calculate these expansions directly from Equation (1.3.1)
without knowing the exact solution?

We will now show that the answer to all these questions is in the affirma-
tive for the present example. Building on the experience gained from this
example we will introduce later on in this section the appropriate mathe-
matical framework to define the above ideas.

Let us consider the expansion which would result from (1.3.1) by letting
¢ — 0 with x, = x/n(¢) fixed for some n(¢) such that ¢ < n < 1. Thus, in
such an expansion x — 0 in the limit but at a slower rate than in the case
leading to (1.3.6). In a sense, the above defines an “intermediate” limit
process.

Setting x = #n(e)x,, we write (1.3.3) in the form

ge
nx, + &

y = Ux,;n;8)=e7¥n" — (1.3.7)
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Now, applying the limit process ¢ — O with x, fixed (1.3.7) has the following
expansion, called the “intermediate” expansion

3 2

€ & & £ enx
=t s
n,  nxy mx nx, 2
4 3
+ O(" ) + O( ) + O(£?) + O(en?). (1.38)

In the above the term e~ "*7/® is transcendentally small and does not appear
as long as ¢|log ¢| < n. Henceforth, we shall always ignore such a term and
automatically require that ¢|log ¢| < n in our calculations. This restricts
somewhat the range of n to ¢|loge| < n < 1.

If we now reexpand the outer and inner expansions using the above
intermediate limit process, we find that if a sufficient number of terms are
included both eventually give (1.3.8). This means that the outer expansion,
which was constructed under the assumption ¢ — 0 with x fixed s 0is actually
valid in the extended sense ¢ — 0, x, = x/n(¢) fixed for some class of functions
n(e) < 1. Similarly, the inner expansion which was constructed under the
assumption ¢ — 0, x* = x/¢ fixed # oo is actually valid in the extended sense
¢ — 0,x, = x/n(e) fixed, for some class of functions n(¢) such that ¢|log &| < 7.

We will demonstrate next that for this example, the extended domains of
validity of the inner and outer expansions overlap in the following sense.
For each R =0, 1, 2, ... there exist integers P, and Q, and functions 7,(¢)
and n,(g) with 5, < n, such that

lim (=0 hanxy)e”™ — 320 galopx, i)
£—0 ek
x, fixed

=0 (1.3.9)

for all n satisfying n, < n < n,.

Equation (1.3.9) is a matching condition for the inner and outer expansions
in their common overlap domain of validity which is defined as the class of
functions n(¢) satisfying the condition 5, < n < 1,.

To demonstrate the result let us first take R = 0. Now h, = 0 and Jo =

e ™ — 1/(1 + x*). Assuming that P = Q = 0, the question now is whether
lir;l [ho(nx,) — go(nx,/e)] = 0. (1.3.10)
Xxp lixed

Expanding g, in terms of x, gives'

g PR I Y (i AR
go = —— - - 13,
0 "x" nzxs ”3x3 l" ( 3 ]])

! Note that the first two terms in this expansion correspond to the first two terms in the inter-
mediate expansion (1.3.8).



