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Preface

The present book originates from a report issued in 1944 under the
auspices of the Office of Scientific Research and Development. Much
material has been added and the original text has been almost entirely
rewritten. The book treats basic aspects of the dynamics of com-
pressible fluids in mathematical form; it attempts to present a
systematic theory of nonlinear wave propagation, particularly in
relation to gas dynamics. Written in the form of an advanced text-
book, it accounts for classical as well as some recent developments,
and, as the authors hope, it reflects some progress in the scientific
penetration of the subject matter. On the other hand, no attempt
has been made to cover the whole field of nonlinear wave propagation
or to provide summaries of results which could be used as recipes for
attacking specific engineering problems.

The book has been written by mathematicians seeking to under-
stand in a rational way a fascinating field of physical reality, and
willing to accept compromise with empirical approach. The authors
‘hope that it will be helpful to engineers, physicists, and mathemati-
cians alike, and that it will not be rejected by mathematicians as too
heavily loaded with physical assumptions or by others as too strictly
mathematical.

Dynamics of compressible fluids, like other subjects in which the
nonlinear character of the basic equations plays a decisive role, is far
from the perfection envisaged by Laplace as the goal of a mathe-
matical theory. Classical mechanics and mathematical physics
predict phenomena on the basis of general differential equations and
specific boundary and initial conditions. In contrast, the subject of
this book largely defies such claims. Important branches of gas
dynamics still center around special types of problems, and general
features of connected theory are not always clearly discernible.
Nevertheless, the authors have attempted to develop and to empha-
size as much as possible such general viewpoints, and they hope that
this effort will stimulate further advances in this direction.
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viii PREFACE

In a field which during recent years has attracted so many workers
and in which such diverse practical and theoretical interests have
asserted themselves, the authors found a balanced survey impossible;
instead they have followed a path dictated largely by their personal
interests and experience. The names of scientists with whom the
authors happened to be in close contact appear frequently; names of
others may have been omitted. No fair appraisal could be made of
the merits of many recent contributions. This is true in particular of
the large number of reports issued during the war by various agencies
and still not freely accessible. In order to avoid further delay, the
authors are publishing this book without a complete survey of the
literature.

The book was prepared for publication with the cooperation of
members of the staff of the Institute for Mathematics and Mechanics
in New York University. The main burden of the editorial work, done
for the original report by R. Shaw, has been carried by Cathleen Synge
Morawetz, who has also contributed constructive criticism in many
details, and whose understanding and competent assistance have been
invaluable. L. J. Savage cooperated actively in rewriting the first
chapter and other parts of the original report. D. A. Flanders has
helped greatly by reading parts of the manuscript and suggesting
important improvements. W.Y. Chen, W. M. Hirsch, E. Isaacson,
A. Leitner, S. C. Lowell, and M. Sion have assisted in this publication
by reading proofs and making useful suggestions. The drawings,
many of which represent actual conditions, have been carried out by
G.W. Evansand J. R. Knudsen. The preparation of the manuscript
was in the competent hands of Edythe Rodermund and Harriet
Schoverling.

Much more than a formal acknowledgement is due to the Office of
Naval Research, not only for the generous support under Contract
N6ori-201, Task Order No. 1, which made possible the preparation of
the book, but also for the stimulating active interest of its staff mem-
bers in the progress of the work.

Thanks also should be expressed to Interscience Publishers for the
cooperative attitude of their staff, and for the genuine interest of their
officers in the promotion of scientific publications.

The book is dedicated to Warren Weaver. As chief of the Applied
Mathematics Panel during the war, he rendered very great services,
not only for the problems of the day, but even more so for the lasting
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PREFACE X
benefit of the mathematical sciences. For us personally his steady
interest in the present work has been a source of encouragement.
Thus the dedication of the book is as well a token of friendship as a
tribute to a man whose energy and vision have contributed so much
to the recent development of applied mathematics in this country.

R. Courant and K. O. FrIEDRICHS

August, 1948
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CHAPTER 1
Compressible Fluids

Violent disturbances—such as result from detonation of ex-
plosives, from the flow through rocket nozzles, from supersonic
flight of projectiles, or from impact on solids—differ greatly from the
“linear”’ phenomensa of sound, light, or electromagnetic signals.
In contrast to the latter, their propagation is governed by nonlinear
differential equations, and as a consequence the familiar laws of
superposition, reflection, and refraction cease to be valid; but even
more novel features appear, among which the occurrence of shock
fronts is the most conspicuous. Across shock fronts the medium
undergoes sudden and often considerable changes in velocity,
pressure, and temperature. Even when the start of the motion is
perfectly continuous, shock discontinuities may later arise automati-
cally. Yet, under other conditions, just the opposite may happen;
initial discontinuities may be smoothed out immediately. Both these
possibilities are essentially connected with the nonlinearity of the
underlying equations.

Nature confronts the observer with a wealth of nonlinear wave
phenomena, not only in the flow of compressible fluids, but also in
many other cases of practical interest. One example, rather different
from those mentioned above, is the catastrophic pressure in a crowd
of panicky people who rush toward a narrow exit or other obstruc-
tion. If they move at a speed exceeding that at which warnings are
passed backward, a pressure wave arises much like that behind a shock
front receding from a wall. Related phenomena, such as congestion
in traffic, seem to be essentially due to similar conditions. In this
book, however, we shall concentrate primarily on the theory of com-
pressible fluids.

Understanding and control of nonlinear wave motion is a matter
of obvious importance. During a period beginning almost a hundred
years ago, Stokes, Earnshaw, Riemann, Rankine, Hugoniot, Lord

1
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2 COMPRESSIBLE FLUIDS CHAP. 1

Rayleigh, and later Hadamard and others wrote fundamental papers
inaugurating this field of research. Then the development was left
mainly to a small group of ingenious men in the fields of mechanics
and engineering. During the last few years, however, when the
barriers between applied and pure science were forced down, a wide-
spread interest arose in nonlinear wave motion, particularly in shock
waves and expansion waves.

It is the purpose of the present book to make the mathematical
theory of nonlinear waves more accessible, giving particular atten-
tion to some recent developments.*

1. Qualitative differences between linear and nonlinear waves

Some characteristics of nonlinear wave motion can be described
in general terms. In linear wave motion, as, for example, in the
transmission of sound, disturbances are always propagated with a
definite speed (relative to the medium) which may vary within the
medium. This “sound speed” is a local property of the medium
itself and remains the same for every conceivable linear wave motion
in the medium. Such a sound speed also plays a role in nonlinear
wave motion. Small disturbances or “wavelets,” slightly modify-
ing a given primary wave motion, are propagated with a certain
speed, again called sound speed, though in this case the sound speed
depends not only on the position within the medium but on the state
of the medium induced by the primary motion.

The distinctive feature of nonlinear waves, however, concerns dis-
turbances or discontinuities which are not necessarily small. In
linear wave motion any initial discontinuity across a surface is pre-
served as a discontinuity and propagated with sound speed. Non-
linear wave motion behaves in a different manner: Suppose there is
an initial discontinuity between two regions of different pressures,
densities, and flow velocities. Then there are the following alternative
possibilities: either the initial discontinuity is resolved immediately
and the disturbance, while propagated, becomes continuous, or the
initial discontinuity is propagated through one or two shock fronts,
advancing not at sonic but at supersonic speed relative to the medium

* For the theory of compressible flow reference may be made to [3,4,5];
different approaches are given by Ssuer [6]) and Liepmann and Puckett [7].
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THE MEDIUM 3

ahead of them. As previously stated, shock fronts are the most
conspicuous phenomena occurring in nonlinear wave propagation;
even without being caused by initial discontinuities they may
appear and be propagated. The underlying mathematical fact is
that, unlike linear partial differential equations, nonlinear equations
often do not admit solutions which can be continuously extended
wherever the differential equations themselves remain regular.

Another striking difference between linear and nonlinear waves
concerns the phenomenon of interaction: the principle of superposition
holds for linear waves bus not for nonlinear waves. As a consequence,
for example, excess pressures of interfering sound waves are merely
additive;in contrast to this fact, interaction and reflection of nonlinear
waves may lead to enormous increases in pressure.

A. General Equations of Flow. Thermodynamic Notions
2. The medium

We shall be primarily concerned with a moving fluid, though
many of the results apply to other moving media (e.g. to a solid slab
in longitudinal wave motion). In this section we shall set forth
the properties of the medium that will be assumed throughout the
book and we shall describe certain idealized media of special interest.
Moreover, since gas dynamics is thoroughly interwoven with thermo-
dynamical concepts, it is appropriate to insert here a collection of
basic notions of thermodynamics in a suitable mathematical form.*

Except where the motion is discontinuous, viscosity, heat con-
duction, and deviation of the medium from thermodynamic equilib-
rium (at any instant and any point) will be neglected. Some eritical
comments concerning the neglect of these phenomena will be made
in later chapters. In particular it will be shown that viscosity and
heat conduction play an important role in forming and maintaining
shock discontinuities.

At each instant and each point of the fluid there is a definite state
(of thermodynamic equilibrium) defined by:

p the pressure,

T the temperature,

*For textbooks on thermodynamics see Epstein [20] and Zemansky {211
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4 COMPRESSIBLE FLUIDS CHAP. IA

the specific volume (i.e. volume per unit mass),

the density, with pr = 1,

the specific entropy,

the specific (internal) energy, and

the specific enthalpy,* defined by ¢ = ¢ + pr.

It is known from thermodynamics that for any given medium only
two of the parameters p, 7, 7, ¢, and S are independent. In fact
they may all be considered as functions of = and S.

The internal energy gained by the medium during a change from
one state to another is the heat contributed to the medium plus the
work done on the medium by compressive action of the pressure
forces. For a change from one state to an immediately neighboring
one this fundamental fact is expressed by the relation

(2.01) de = TdS — pdr.

In a reversible process, TdS is the heat acquired by conduction;
in an irreversible process, TdS is greater than the heat so acquired.
If the irreversible process is one that can be described as determined
by the action of viscosity, then the excess of 7dS over the heat ac-
quired by conduction may conveniently be interpreted as the heat
produced by viscous forces.

Suppose that for some medium we know how the specific energy e
depends on 7 and S. Then the pressure p and temperature T may
immediately be found on considering the meaning of relation (2.01).
Thus

(2.02) p=—e,T = €s,

S, 0 (n‘b <

the subscripts indicating partial differentiation.**
The functions giving p in terms of p, or r, and S, occurring so
frequently in the theory of fluid flow, will consistently be denoted by

(2.03) = f(p,8); p = g(r, S).

Extending slightly the conventional nomenclature, we shall call

either of these equations the caloric equation of state of the medium.
Neglecting viscosity and heat conduction is tantamount to

assuming that as a particle of the medium moves about, the specific

* The notion of enthalpy will be discussed in Section 9.
** Nearly everywhere in the book, we indicate partial derivatives by
subseripts.
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