.......... ; 42 ::: R

B 18] /= 31 593 #r
B /NI B li'i

(ZRIZhR)

Wavelet Methods
for Time Series
Analysis

Donald B. Percival & Andrev

mmlﬂm}ifii

hhhhhhhhhhhhhh



¥ 8] B 51| 53 T
B /NB T &

(SR3hR)




Donald B. Percival and Andrew T. Walden: Wavelet Methods for Time Series Analysis (ISBN:
0-521-64068-7).

Originally published by Cambridge University Press in 2000.

This reprint edition is published with the permission of the Syndicate of the Press of the
University of Cambridge, Cambridge, England.

Copyright © 2000 by Cambridge University Press.

This edition is licensed for distribution and sale in the People’s Republic of China only,

excluding Hong Kong, Taiwan and Macao and may not be distributed and sold elsewhere.

# 45 i Fh SIBF R = R #E AR -

ABRSCHE MR RS K R AR A HIAR -

BERRAURRAE e AR IEFNESR N (REEREERE. &8, RiIeX) #EkT.
AL AT H 1R 8RR A E BSAE AT A

WA, RALIT.

EHBIRNEIZS . BEF: 01-2004-1665
BEEEREE (CIP) ¥R

R Z0 AT /N i (FEXhR) / HIPEBLUR (Percival, D. B.) %%, —dbxt: LW
T bRkt 2004.5

(R HFRRA5%)

F 4L Wavelet Methods for Time Series Analysis

ISBN 7-111-14118-0

W O.8- M. BRFEFIOH - &3 V. 0211.61
o E R A B4R CIPR IR = (2004) 0179925

U Tk tHER#E (bt B 77 5 1 Af22 s WBEK4  100037)
HIEGE: BikE

AL ESFFER ENR S ENR - BB R ITRT R AT
200445 H 1R 1k BRI

787mm x 1092mm 1/16 - 38.5E1%k

EN¥: 0 001-3 00075

EHr: 58.007C

NGRS, ST, O, BRI, mAHRAITHR S
F itk (010) 68326294



Bkgs: HRHREAM (F20R)

HE (B3

EHEE RE A (FS5R)
BIBUBCE ML (F540)

i F AR
G
BlEobr (F3M)

R R AR, REG. TREPRINA

()%

@ HM b 5/ AT RiIR

Ber i (830R)

ooy iR SR FHERE (FSHR)
BB A s b fu o qts £ 50 5 i

Wit

% CBE s B
L8282 Ra gt §ic g
ML 2 S i

i St (el R (3R
SRR (BTR)
Lot BELH (H3R)
BerobrF B (30
{Zefs b (SB20)
Tt (3MR)
BB

b (200

B e@mP (F20)
e ER (F10k)

MEHE SRR (F4R)

%
Kor#f (H3hR)

Graham/49.00
Brualdi/35.00
Rosen/79.00
Rosen/59.00
Fitzpatrick/69.00
Stampfli/35.00
Kincaid/75.00
Bean/55.00
Isaacs/65.00
Pinsky/49.00
Giordano/59.00 (B ¥¢#)
Zill/69.00
Kleinbaum/88.00
Stone/89.00
Lattin/69.00 ( Fft 4% )
Rice/78.00
Kao0/49.00
Bowerman/89.00
Jain/49.00 (FfiAe#L)
Brown/42.00
Rudin/39.00
Rudin/35.00
Rudin/42.00
Ahlfors/35.00
Cheney/39.00
Munkres/59.00
Ross/29.00
Hardy/65.00
Rosen/59.00
Artin/59.00
Royden/45.00




A5 BF G A

BogaoRE (EHFE3MM) Rudin/#% 3% 2/28.00
SR Stampfli/ZE BH#4/26.00

T2 AR HAMM (mxsn)

BEHS% £—F125.00

HHAHRFLAE hxay)

RBBEBIFIR (FBEa) Rosen/$% 2 %/75.00
HA¥Y (EEE3m) Brualdi/i3 5% 45/38.00



Preface

The last decade has seen an explosion of interest in wavelets, a subject area that has
coalesced from roots in mathematics, physics, electrical engineering and other dis-
ciplines. As a result, wavelet methodology has had a significant impact in areas as
diverse as differential equations, image processing and statistics. This book is an intro-
duction to wavelets and their application in the analysis of discrete time series typical
of those acquired in the physical sciences. While we present a thorough introduction
to the basic theory behind the discrete wavelet transform (DW'T), our goal is to bridge
the gap between theory and practice by

e emphasizing what the DWT actually means in practical terms;

o showing how the DWT can be used to create informative descriptive statistics for
time series analysts;

¢ discussing how stochastic models can be used to assess the statistical properties
of quantities computed from the DWT; and

e presenting substantive examples of wavelet analysis of time series representative

of those encountered in the physical sciences.

To date, most books on wavelets describe them in terms of continuous functions
and often introduce the reader to a plethora of different types of wavelets. We con-
centrate on developing wavelet methods in discrete time via standard filtering and
matrix transformation ideas. We purposely avoid overloading the reader by focus-
ing almost exclusively on the class of wavelet filters described in Daubechies (1992),
which are particularly convenient and useful for statistical applications; however, the
understanding gained from a study of the Daubechies class of wavelets will put the
reader in a excellent position to work with other classes of interest. For pedagogical
purposes, this book in fact starts (Chapter 1) and ends (Chapter 11) with discussions
of the continuous case. This organization allows us at the beginning to motivate ideas
from a historical perspective and then at the end to link ideas arising in the discrete
analysis to some of the widely known results for continuous time wavelet analysis.

Topics developed early on in the book (Chapters 4 and 5) include the DWT and
the ‘maximal overlap’ discrete wavelet transform (MODWT), which can be regarded as
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a generalization of the DWT with certain quite appealing properties. As a whole, these
two chapters provide a self-contained introduction to the basic properties of wavelets,
with an emphasis both on algorithms for computing the DWT and MODWT and also
on the use of these transforms to provide informative descriptive statistics for time
series. In particular, both transforms lead to both a scale-based decomposition of the
sample variance of a time series and also a scale-based additive decomposition known
as a multiresolution analysis. A generalization of the DWT and MODWT that are
known in the literature as ‘wavelet packet’ transforms, and the decomposition of time
series via matching pursuit, are among the subjects of Chapter 6. In the second part
of the book, we combine these transforms with stochastic models to develop wavelet-
based statistical inference for time series analysis. Specific topics covered in this part
of the book include

o the wavelet variance, which provides a scale-based analysis of variance comple-
mentary to traditional frequency-based spectral analysis (Chapter 8);

e the analysis and synthesis of ‘long memory processes,’ i.e., processes with slowly
decaying correlations (Chapter 9); and

e signal estimation via ‘thresholding’ and ‘denoising’ (Chapter 10).

This book is written ‘from the ground level and up.” We have attempted to make
the book as self-contained as possible (to this end, Chapters 2, 3 and 7 contain reviews
of, respectively, relevant Fourier and filtering theory; key ideas in the orthonormal
transforms of time series; and important concepts involving random variables and
stochastic processes). The text should thus be suitable for advanced undergraduates,
but is primarily intended for graduate students and researchers in statistics, electrical
engineering, physics, geophysics, astronomy, oceanography and other physical sciences.
Readers with a strong mathematical background can skip Chapters 2 and 3 after a
quick perusal. Those with prior knowledge of the DWT can make use of the Key Facts
and Definitions toward the end of various sections in Chapters 4 and 5 to assess how
much of these sections they need to study. Drafts of this book have been used as a
textbook for a graduate course taught at the University of Washington for the past five
years, but we have also designed it to be a self-study work-book by including a large
nmumber of exercises embedded within the body of the chapters (particularly Chapters 2
to 5), with solutions provided in the Appendix. Working the embedded exercises will
provide readers with a means of progressively understanding the material. For use
as a course textbook, we have also provided additional exercises at the end of each
chapter (instructors wishing to obtain a solution guide for the exercises should follow
the guidance given on the Web site detailed below).

The wavelet analyses of time series that are described in Chapters 4 and 5 can
readily be carried out once the basic algorithms for computing the DWT and MODWT
(and their inverses) are implemented. While these can be immediately and readily
coded up using the pseudo-code in the Comments and Extensions to Sections 4.6
and 5.5, links to existing software in S-Plus and Lisp can be found by consulting the
Web site for this book, which currently is at

http://www.staff.vashington.edu/dbp/wmtsa.html

(alternatively the reader can go to the site for Cambridge University Press — currently
at http://www.cup.org — and search for the page describing this book, which should
have a link to the Web site). The reader should also consult this Web site to obtain
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 a current errata sheet, updates to references at the end of the book that are yet to
appear, and references to additional material. Additionally readers can use the Web
site to download the coefficients for various scaling filters (as discussed in Sections 4.8
and 4.9), the values for all the time series used as examples in this book, and certain
computed values that can be used to check computer code. To facilitate preparation
of overheads for courses and seminars, the Web site also allows access to pdf files with
all the figures and tables in the book (please note that these figures and tables are the
copyright of Cambridge University Press and must not be further distributed or used
without written permission).

The book was written using Donald Knuth’s superb typesetting system TEX as
implemented by Blue Sky Research in their product TgXtures for Apple Macintosh™
computers. The figures in this book were created using either the plotting system
GPL written by W. Hess (whom we thank for many years of support) or S~Plus, the
commercial version of the S language developed by J. Chambers and co-workers and
marketed by MathSoft, Inc. The computations necessary for the various examples and
figures were carried out using either S-Plus or P[TSS (a Lisp-based object-oriented
program for interactive time series and signal analysis that was developed in part by
one of us (Percival)).

We thank R. Spindel and the late J. Harlett of the Applied Physics Laboratory,
University of Washington, for providing discretionary funding that led to the start
of this book. We thank the National Science Foundation, the National Institutes of
Health, the Environmental Protection Agency (through the National Research Cen-
ter for Statistics and the Environment at the University of Washington), the Office of
Naval Research and the Air Force Office of Scientific Research for ongoing support dur-
ing the writing of this book. Our stay at the Isaac Newton Institute for Mathematical
Sciences (Cambridge University) during the program on Nonlinear and Nonstationary
Signal Processing in 1998 contributed greatly to the completion of this book; we thank
the Engineering and Physical Science Research Council (EPSRC) for the support of
one of us (Percival) through a Senior Visiting Fellowship while at Cambridge.

We are indebted to those who have commented on drafts of the manuscript or sup-
plied data to us, namely, G. Bardy, J. Bassingthwaighte, A. Bruce, M. Clyde, W. Con-
stantine, A. Contreras Cristan, P. Craigmile, H.-Y. Gao, A. Gibbs, C. Greenhall,
M. Gregg, M. Griffin, P. Guttorp, T. Horbury, M. Jensen, R. D. Martin, E. McCoy,
F. McGraw, H. Mofjeld, F. Noraz, G. Raymond, P. Reinhall, S. Sardy, E. Tsakiroglou
and B. Whitcher. We are also very grateful to the many graduate students who have
given us valuable critiques of the manuscript and exercises and found numerous errors.
We would like to thank I. Kang, I. MacLeod, K. Tanaka and Z. Xuelin for pointing out
errors that have been corrected in the current printing of the book. For any remaining
errors — which in a work of this size are inevitable - we apologize, and we would be
pleased to hear from any reader who finds a mistake so that we can list them on the
Web site and correct any future printings (our ‘paper’ and electronic mailing addresses
are listed below). Finally we acknowledge two sources of great support for this project,
David Tranah, our editor at Cambridge University Press, and our respective families.

Don Percival Andrew Walden

Applied Physics Laboratory Department of Mathematics
Box 355640 Imperial College of Science,
University of Washington Technology and Medicine

Seattle, WA 98195-5640 London SW7 2BZ, UK
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1

Introduction to Wavelets

1.0 Introduction

Wavelets are mathematical tools for analyzing time series or images (although not
exclusively so: for examples of usage in other applications, see Stollnitz et al., 1996,
and Sweldens, 1996). Our discussion of wavelets in this book focuses on their use
with time series, which we take to be any sequence of observations associated with
an ordered independent variable ¢ (the variable ¢ can assume either a discrete set
of values such as the integers or a continuum of values such as the entire real axis
— examples of both types include time, depth or distance along a line, so a time
series need not actually involve time). Wavelets are a relatively new way of analyzing
time series in that the formal subject dates back to the 1980s, but in many aspects
wavelets are a synthesis of older ideas with new elegant mathematical results and
efficient computational algorithms. Wavelet analysis is in some cases complementary
to existing analysis techniques (e.g., correlation and spectral analysis) and in other
cases capable of solving problems for which little progress had been made prior to the
introduction of wavelets.

Broadly speaking (and with apologies for the play on words!), there have been two
main waves of wavelets. The first wave resulted in what is known as the continuous
wavelet transform (CWT), which is designed to work with time series defined over the
entire real axis; the second, in the discrete wavelet transform (DWT), which deals with
series defined essentially over a range of integers (usually ¢t = 0,1,..., N — 1, where
N denotes the number of values in the time series). In this chapter we introduce
and motivate wavelets via the CWT. The emphasis is on conveying the ideas behind
wavelet analysis as opposed to presenting a comprehensive mathematical development,
which by now is available in many other places. Our approach will concentrate on what
exactly wavelet analysis can tell us about a time series. We do not presume extensive
familiarity with other common analysis techniques (in particular, Fourier analysis).
After this introduction in Sections 1.1 and 1.2, we compare and contrast the DWT
with the CWT and discuss why we feel the DWT is a natural tool for discrete time
series analysis. The remainder of the book will then be devoted to presenting the
DWT (and certain closely related transforms) from the ground level up (Chapters 2
to 6), followed by a discussion in Chapters 7 to 10 of the statistical analysis of time

1



2 Introduction to Wavelets

series via the DWT. We return to the CWT only in Chapter 11, where we deepen our
understanding of the DWT by noting its connection to the CWT in the elegant theory
of multiresolution analysis for functions defined over the entire real axis.

1.1 The Essence of a Wavelet
What is a wavelet? As the name suggests, a wavelet is a ‘small wave.’ A small
wave grows and decays essentially in a limited time period. The contrasting notion is
obviously a ‘big wave.” An example of a big wave is the sine function, which keeps on
oscillating up and down on a plot of sin(u) versus u € (—00, 00). To begin to quantify
the notion of a wavelet, let us consider a real-valued function ¥(-) defined over the
real axis (—o0, 00) and satisfying two basic properties.

(1] The integral of ¥(-) is zero:
/ P(u)du = 0. (2a)
[2] The square of ¥(-) integrates to unity:

/_ ~ P (u)du =1 (2b)

(for the sine function, the above integral would be infinite, so sin?(+) cannot be
renormalized to integrate to unity).

If Equation (2b) holds, then for any € satisfying 0 < € < 1, there must be an interval
[~T,T) of finite length such that

T
/ Y (u)du>1 e
-T

If we think of € as being very close to zero, then ¥(-) can only deviate insignificantly
from zero outside of [T, T]: its nonzero activity is essentially limited to the finite
interval [-T, T)]. Since the length of the interval [T, T] is vanishingly small compared
to the infinite length of the entire real axis (—oo, 00), the nonzero activity of ¥(-) can
be considered as limited to a relatively small interval of time. While Equation (2b)
says ¥(-) has to make some excursions away from zero, Equation (2a) tells us that
any excursions it makes above zero must be canceled out by excursions below zero, so
¥(-) must resemble a wave. Hence Equations (2a) and (2b) lead to a ‘small wave’ or
wavelet.

Three such wavelets are plotted in Figure 3. Based on their definitions below,

the reader can verify that these functions indeed satisfy Equations (2a) and (2b) (that
they integrate to zero is evident from the plots). The first is called the Haar wavelet

function:
-1/y2, -1<u<0

P (u) = ¢ 1/4/2, O<u<l; (2¢)
0, otherwise

(a slightly different formulation of this wavelet is discussed in detail in Section 11.6).
The above is arguably the oldest wavelet, being named after A. Haar, who developed
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Figure 3. Three wavelets. From left to right, we have one version of the Haar wavelet;
a wavelet that is related to the first derivative of the Gaussian probability density function
(PDF); and the Mexican hat wavelet, which is related to the second derivative of the Gaussian

PDF.

it as an analysis tool in an article in 1910. To form the other two wavelets, we start
with the Gaussian (normal) probability density function (PDF) for a random variable
with mean zero and variance o%:

e—u2/2<72

V2ro? '

—o0 < U < 00.

I

b(u)

The first derivative of ¢(-) is

dé(u) ue~—v’/20*

du o3v2er

If we renormalize the negative of the above to satisfy Equation (2b), we obtain the
wavelet

. \/é'ue—uzﬂa2
o = Y (32)

which is shown in the middle of Figure 3 with o = 0.44311. With proper renormaliza-
tion again, the negative of the second derivative of ¢(-) also yields a wavelet, usually
referred to as the Mexican hat:

- 2 (1 _ %;) 6—142/202
Y (u) = YNy

(3b)

The origin of its name should be apparent from a glance at the right-hand plot of
Figure 3, in which ¢ = 0.63628.

In summary, a wavelet by definition is any function that integrates to zero and is
square integrable (see, however, item (1] in the Comments and Extensions below).



4 Introduction to Wavelets

Comments and Extensions to Section 1.1

1] We have intentionally given just a ‘bare bones’ definition of a wavelet so that
we can focus on presenting the key concepts behind the subject. To get wavelets of
practical utility, it is necessary to impose conditions beyond Equations (2a) and (2b).
Much of the mathematical research in wavelets has been to determine what conditions
are required to achieve certain types of analysis with wavelets (e.g., edge detection,
singularity analysis, etc.). We mention one important and common additional condi-
tion here, namely, the so-called admissibility condition. A wavelet ¥(-) is said to be
admissible if its Fourier transform, namely,

v(f)= [ ” plu)e 2 gy,

is such that o )

Cy = / I—\I’(fﬂ df satisfies 0 < Cy < 00 (4a)

0

(Chapter 2 has a review of Fourier theory, including a summary of the key results for
functions such as ¥(-) in the last part of Section 2.7). This condition allows the recon-
struction of a function z(-) from its continuous wavelet transform (see Equation (11a)).
For additional discussion on the admissibility condition, see, e.g., Daubechies {1992,
pp- 24-6).
[2] To simplify our exposition in the main part of this chapter, we have assumed 9(-)
to be real-valued, but complex-valued wavelets are often used, particularly in geo-
physical applications (see, e.g., the articles in Foufoula—Georgiou and Kumar, 1994).
One of the first articles on wavelet analysis (Goupillaud et al., 1984) was motivated
by Morlet’s involvement in geophysical signal analysis for oil and gas exploration. He
wanted to analyze signals containing short, high-frequency transients with a small
number of cycles, as well as long, low-frequency transients. The examples given used
the complex wavelet

w(u) — Ce—iwou (e—u2/2 _ \/56~W3/4e_u2) , (4b)
where C and wp are constants. It is well known that

/oo e~ woug=ut/2gy, — \/2_7l'e-“’g/2

- 00

(see e.g., Bracewell, 1978, p. 386, or Percival and Walden, 1993, p. 67), from which
it follows that [*° 9(u)du = 0, so that Equation (2a) is satisfied. For Morlet, the
fact that Equation (2a) holds was not just a mathematical result, but also a physical
necessity: the seismic reflection time series under analysis also ‘integrate to zero’ since
compressions and rarefactions must cancel out. The constant C is chosen so that
the complex-valued version of Equation (2b), namely, [ |#(u}|*du = 1, holds for a
particular choice of wo. For example, when wy = 5, we have C = 0.7528. As wp is
increased further, the negative term in (4b) becomes negligible; when wy = 10 with
C = 7%/, we have [ [y (u)[*du = 1 to nine decimal places accuracy. Hence for

large wo,
Y(u) = ¢",‘°“(u) = g /4 iwongmu /2,



