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Aims & Scope

The meaning of “Mathematics for Industry” (sometimes abbreviated as MI or Mfl) is different
from that of “Mathematics in Industry” (or of “Industrial Mathematics™). The latter is restrictive: it
tends to be identified with the actual mathematics that specifically arises in the daily management
and operation of manufacturing. The former, however, denotes a new research field in mathematics
that may serve as a foundation for creating future technologies. This concept was born from the
integration and reorganization of pure and applied mathematics in the present day into a fluid and
versatile form capable of stimulating awareness of the importance of mathematics in industry. as
well as responding to the needs of industrial technologies. The history of this integration and
reorganization indicates that this basic idea will someday find increasing utility. Mathematics can
be a key technology in modern society.

The series aims to promote this trend by (1) providing comprehensive content on applications
of mathematics, especially to industry technologies via various types of scientific research, (2)
introducing basic, useful, necessary and crucial knowledge for several applications through con-
crete subjects. and (3) introducing new research results and developments for applications of
mathematics in the real world. These points may provide the basis for opening a new mathematics-
oriented technological world and even new research fields of mathematics.

More information about this series at http://www.springer.com/series/13254



Preface

Aims and Scope

Tensegrity structures are now more than 60-years old, since their birth as artworks.
However, they are not “old” nor out of fashion! On the contrary, they are becoming
more and more present in many different fields, including but not limited to
engineering, biomedicine, and mathematics. These applications make use of the
unique mechanical as well as mathematical properties of tensegrity structures in
contrast to conventional structural forms such as trusses and frames.

Our primary objective in writing this book is to provide a textbook for self-study
which is easily accessible not only to engineers and scientists, but also to upper-level
undergraduate and graduate students. Both students and professionals will find
material of interest to them in the book. With this objective in mind, the presentation
of this book is detailed with many examples, and moreover, it is self-contained.

There are already several existing books on tensegrity structures; most of them
present approaches to realization and practical applications of those structures. By
contrast, this book is devoted to helping the readers achieve a deeper understanding
of fundamental mechanical and mathematical properties of tensegrity structures. In
particular, emphasis is placed on the two key problems in preliminary design of
tensegrity structures—self-equilibrium and (super-)stability, by extensively utiliz-
ing the concept of force density and high level of symmetry of the structures.

Subjects and Contents

Tensegrity structures are similar in appearance to conventional bar-joint structures
(trusses), however, their members carry forces (prestresses) even when no external
load is applied. This means that their nodes and members have to be balanced by
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the prestresses so as to maintain their equilibrium. Furthermore, most tensegrity
structures are intrinsically unstable in the absence of prestresses, and it is the
introduction of prestresses that makes them stable. For these reasons, finding the
self-equilibrated configuration and investigation of stability are the two key
problems in the preliminary design of tensegrity structures.

Finding the configuration associated with prestresses, in the state of self-equi-
librium, is called form-finding or shape-finding. It is a common design problem for
tension structures, including tensile membrane structures and cable-nets. The
problem is difficult because the configuration and prestresses cannot be determined
separately as a result of the high interdependency between them. Further difficulties
arise from the fact that tensegrity structures maintain their stability without any
support.

A structure is stable if and only if it has the locally minimum total potential
energy, or strain energy in the absence of external loads. Stability investigation of
tensegrity structures is necessary because their stability cannot be guaranteed as can
that of cable-nets or membrane structures carrying tension only in their structural
elements. This comes from the fact that tensegrity structures are composed of
(continuous) tensile members and (discontinuous) compressive members. More-
over, it is possible for tensegrity structures to be super-stable, which is a more
robust stability criterion, if proper prestresses are associated with the proper con-
nectivity pattern.

In this book, basic concepts and applications of tensegrity structures are intro-
duced in Chap. 1. Chapter 2 formulates the matrices and vectors necessary for the
study of self-equilibrium and stability. The analytical conditions for self-equilib-
rium of several highly symmetric tensegrity structures with simple geometries are
given in Chap. 3. Chapter 4 defines the three stability criteria—stability, prestress-
stability, and super-stability—and derives the necessary conditions and sufficient
conditions for super-stability. The force density method, which guarantees super-
stability, is presented in Chap. 5 for numerical form-finding of relatively complex
tensegrity structures. Utilizing the analytical formulations for highly symmetric
structures given in Appendix D, the self-equilibrium and super-stability conditions
are derived for the prismatic tensegrity structures in Chap. 6 and those for the star-
shaped structures in Chap. 7; both these classes of structures are of dihedral
symmetry. Additionally, Chap. 8 presents the self-equilibrium and super-stability
conditions for structures with tetrahedral symmetry.

At the end of the preface, we have to give our deepest thanks to our families,
friends, and former and current students for their supports. Part of the work on
symmetry has been conducted in close collaboration with Dr. Simon D. Guest
of the University of Cambridge and Professor Robert Connelly of Cornell Uni-
versity: they showed us a new way to study tensegrity structures. Mr. Masaki
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Okano of Nagoya City University read the first half of the book carefully and found
many mistakes, which we then were able to correct. We also appreciate the proposal
of writing this book by Dr. Yuko Sumino of Springer Japan; she has always been
helpful during the preparation and publication of the book.

Nagoya, December 2014 Jing Yao Zhang
Higashi-Hiroshima Makoto Ohsaki
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Chapter 1
Introduction

Abstract In this introductory chapter, we first introduce the basic concepts and some
applications of tensegrity structures, and then present their design problems which
motivates our study in this book. Finally, a brief review of the existing researches on
the design problems is given.

Keywords Applications * Form-finding methods - Stability criteria

1.1 General Introduction

The term ftensegrity was created by Richard Buckminster Fuller as a contraction of
‘tensional’ and ‘integrity’ [15]. It refers to the integrity of a stable structure balanced
by continuous structural members (cables) in tension and discontinuous structural
members (struts) in compression. Moreover, the cables are flexible and global com-
ponents, while the struts are stiff and local components.

The first tensegrity structure, called X-column, is considered to be built by Kenneth
Snelson in 1948 [35].! Snelson came up with the idea of building this structure as
an answer to the question posted by Fuller, who was his teacher at Black Mountain
College at that time: “Is it possible to build a structure to illustrate the structural
principle of nature, which was observed to rely on that continuous tension embraces
isolated compression elements?”

There is no strict definition of tensegrity structures up to now that is accepted by
all people. Instead of giving a strict definition of our own, we generally accept that
a tensegrity structure should have the following characteristics:

! More details on the birth of tensegrity structures can be found in the papers [25-27] by Motro.

© Springer Japan 2015 1
J.Y. Zhang and M. Ohsaki, Tensegrity Structures, Mathematics for Industry 6,
DOI 10.1007/978-4-431-54813-3_1
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Fig. 1.1 The simplest
tensegrity structure in
three-dimensional space. The
struts in compression are
denoted by thick lines, and
the cables in tension are
denoted by thin lines

Characteristics of a tensegrity structure:

e The structure is free-standing, without any support.

e The structural members are straight.

e There are only two different types of structural members: struts carrying
compression and cables carrying tension.

e The struts do not contact with each other at their ends.”

Moreover, we will persist in the entire book that the members in thick lines
indicate struts in compression, and the members in thin lines indicate cables in
tension, because tensile members are generally flexible and slender.

Figure 1.1 shows the simplest three-dimensional tensegrity structure. The struc-
tures having similar appearances are called prismatic structures, which will be studied
in detail in Chaps. 3 and 6. The struts of the structure do not contact with each other.
Moreover, supports or fixed nodes are unnecessary to maintain its (super-)stability
with the exclusion of rigid-body motions.

1.2 Applications

Tensegrity structures were originally born in arts; however, they ‘exist’ universally,
from the micro scale to the macro scale. In the micro scale, for example, response
of living cells subjected to environmental changes can be interpreted and predicted
by tensegrity models; in the intermediate scale, the human body can be modeled as
a tensegrity structure; and in the macro scale, structure of the cosmos can also be
regarded as a tensegrity structure, where the planets are the nodes and their interac-
tions are the invisible members.

2 With a very limited exceptions, the struts of some tensegrity structures are allowed to share
common nodes, especially in the two-dimensional cases.
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Owing to universalness of tensegrity structures, applications of their principles
have been consecutively increasing in a great variety of fields, since their birth as
art works. This section introduces some of the interesting applications. However,
this introduction is no way exhaustive, since any such attempt would become out-
of-date very soon due to the rapidly increasing number. The up-to-date information
is provided on our homepage.’

1.2.1 Applications in Architecture

The members of tensegrity structures are the simplest possible ones, because they
are straight and carry only axial forces. Moreover, a tensegrity structure maintains its
stability with the minimum possible number of structural members, which is much
less than the necessary number for a conventional bar-joint structure (truss) consisting
of the same number of nodes. Therefore, tensegrity structures are considered as one
of the optimal structural systems, in particular in the engineering view.
Furthermore, tensegrity structures have many other advantages when they are
used as long-span structures to cover a large space without columns inside. Some of
these advantages by comparison to some other structural systems are listed below.

e Introduction of prestresses into the structures could significantly enhances their
structural stiffness, although this is not always the case. Therefore, they can be built
with much smaller amounts of materials while having the same capacity of resisting
external loads; as a reward, this can also significantly reduce the gravitational loads,
which are usually dominant in the design of long-span structures.

e The structural members are of very high mechanical efficiency, because they carry
only axial forces such that the stresses (normal stresses only) in a member are
uniform.

e The struts in compression that are prone to member buckling might be more slender,
because they are local components and much shorter in length than cables. This
can also effectively reduce the gravitational loads.

e The cables in tension can make full use of high-strength materials, because large
cross sections due to member buckling are not necessary.

e Complex joints connecting different members are not necessary, since the flexible
cables are much easier to be attached to the struts, while the struts do not contact
with each other.

Using the concept of tensegrity structures, David Geiger designed a permanent
long-span structure, called the Georgia Dome [5, 21]. The structure was constructed
in 1992 as the main hall for the 1996 Atlanta Summer Olympic Games in U.S. It
has a hei)ghl of 82.5m, a length of 227 m, a width of 185 m, and a total floor area of
9,490 m~.

3 Online sources on tensegrity structures collected by the authors are consecutively updated at http://
zhang.AlStructure.net/links/tensegritylinks/.
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The great success of Georgia Dome aroused the interests and enthusiasms of many
structural engineers and researchers, and a number of tensegrity-domes have been
built around the world [46, 49]. However, it should be noted that tensegrity-domes are
not ‘real’ tensegrity structures in strict definition, because they are not free-standing
and maintain their stability by being attached to supports at the boundary.

The experimental facility builtin Chiba, Japan in 2001 as shown in Fig. 1.2 is one of
the earliest attempts to use ‘real’ tensegrity structure in architectural engineering [20].
Two tensegrity units are used as structural components, and one isolated strut at the
top of each unit is used to support the membrane roof. One of the units is 10m high
and the other is 7m high. The units have the similar shape to the simplest (prismatic)
structure as shown in Fig. 1.1, with three additional *vertical” cables to attain proper
rigidity for practical applications.

1.2.2 Applications in Mechanical Engineering

In the filed of mechanical engineering, tensegrity structures are utilized as ‘smart’
structures [2, 6, 16, 34] and deployable structures [38], the shapes of which are

Fig. 1.2 Example of a pair of tensegrity structures used as structural components to support a
membrane roof. The structure was constructed in Chiba, Japan in 2001. The left photo is the
interior view of the building, the upper-right photo is its exterior night view, and the lower-right
photo is one of the tensegrity structures under construction. (Courtesy: Dr. K. Kawaguchi at the
University of Tokyo)



