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Preface

This is the first half of a text for a beginning graduate course in theoretical
statistics. Since a strong background in statistics requires a strong background
in probability theory, we divide the text into two volumes. This Volume I is
devoted to probability while Volume II is devoted to statistics.

This is an introduction to probability and statistics from the ground up,
designed for students who need a solid understanding of statistical theory in
order to pursue higher education and research as well as using statistics in
their careers. i

Essentially, the material in this text is standard for an introductory course
in statistics at all universities. As such, there exists a large number of similar
texts. The reason for writing another text can be explained by the following
distinctions with existing texts. )

(i) This text is written for students. Of course, the instructors, when using
this text, can provide additional topics or their favorite proof techniques, but
we have students in mind in the hope that they will be able to read through the
text without tears! This includes self-study. The main topic for students taking
this course is statistics. As such, at the very beginning, it should be clearly
explained why they need to study probability theory with strong emphasis in
mathematics. We use the term “theoretical statistics” to classify this study, as
opposed to “applied statistics”. We avoid the term “mathematical statistics”
for two reasons. First, although mathematics is the machinery needed to
investigate statistical theory, there is no need to over-emphasize it. After all,
we need mathematics in all fields of science. Second, we should not give the
impression that statistics is reserved for mathematicians!

(ii) Introducing probability theory as the first step towards statistical anal-
ysis, we should make students appreciate the approach. The material presented
in this first volume is also standard and sufficiently solid for students whose
interests might not be in statistics, but in probability and related topics. For
statistically oriented students, we bring in concepts and techniques from math-
ematics only when needed. We motivate every mathematical concept used.
Our point of view is this: students should think about the material as inter-
esting concepts and techniques for statistics, rather than a burden of heavy
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mathematics.

(iii) For students to read the text, line by line, with entli siasm and interest;
we write the text in the most elementary and simple manner. For example, a
result can be proved by several different methods. We choose the simplest one,
since, in our view, students need a simple proof that they can understand, at
least in a first course on the topic. To assist them in their reading we do not
hesitate to provide elementary arguments, as well as supplying review material
as needed. Also, we trust that in reading the proofs of results, the students
will learn ideas and proof techniques that are essential for further studies. For
this to be efficient, proofs should be given with great care, keeping in mind
that we are not in a hurry to give the shortest proof to get the result, but we
are guiding our student readers in their learning of proof techniques.

(iv) The material is presented in a logical order, connecting one topic nicely
to another. We start from the ground up and guide the students, step by step,
to get deeper into the analysis. We are not afraid to introduce what we could
call “sophisticated mathematics” such as Caratheodory theorem, or o-finite
measures! This is so because, on the one hand, these are needed for a serious
study of foundational statistics, and, on the other hand, we introduce them in a
friendly way so that students just feel like learning a new but accessible concept
in calculus! The benefit is twofold. Students go through the material smoothly
without being forced to accept mysterious results, and will be exposed to these
concepts at this level prior to further studies. After all, an introduction to
probability for statistics or for other goals should start from simple things
ssuch as “random samples”, to more sophisticated things such as “sample
means as Stieltjes integrals”.

(v) In the above spirit, students will get to learn about Caratheodory’s
theorem, Fubini’s theorem, Fatou’s lemma, Lebesgue dominated convergence
theorem, Lebesgue-Stieltjes theorem, and the Radon-Nikodym theorem. Only
a few theorems such as Caratheodory’s theorem, Fubini’s theorem and the
general decomposition of distribution functions are not proved, but complete
references are provided. Whenever, a result is not proved, a reference is given.

(vi) Another point of our pedagogy is that students, even in a first course,
should be exposed to some advances in statistical theory. An example is the
concept of random sets. Biased by our own research interests, we choose to
make this topic familiar to students in probability and statistics. Also, addi-
tional basic results for statistical theory should be included. As such, students
will be exposed to copulas, Sklar’s theorem, Choquet’s theorem, capacity func-
tionals of random sets, conditional events, large deviations, Glivenko-Cantelli
theorem, Choquet integral, Kolmogorov consistency theorem, Portmamteau
theorem, Paul Lévy theorem, etc. Note that the sections or parts with * are
further materials for interested readers and may be skipped without inter-
ruputing the flow of the text.

In summary, the text is not a celebration of how great probability theory
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is, but simply a friendly guide for students to appreciate the contributions
of mathematics to the field of statistics. The material presented in this Vol-
ume I is the minimum background, in our view, for the solid introduction to
statistical theory in Volume II.

Giving the technological dominance in today’s life style, it is again an
opportunity to remind our students of the fundamental contributions of math-
ematics to all fields of science. The appreciation and understanding of such
contributions are essential for any scientific career.

We thank our families for their love and support during the writing of
this text. Our Department of Mathematical Sciences at New Mexico State
University provided us with a constraint-free environment for carrying out this
project. We thank Dr. Ying Liu of Tsinghua University Press for asking us to
write this series of two-volume text for Tsinghua University Press. Finally, we
thank all £E)&rticipants of our weekly Statistics Seminar at New Mexico State
University, 2002-2005, for their discussions on statistics of random sets and
especially for their insistence that we should include the topic of random sets
in a first course in probability.

Hung T. Nguyen and Tonghui Wang
Las Cruces, New Mexico, USA
: December, 2007.
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Chapter 1

Models for Random
Experiments

These beginning lectures aim at providing practical motivations for general
mathematical models for random phenomena, namely probability spaces.

Essentially, statistics is a science for making inference from samples to
populations. Data are observations obtained from samples. They are viewed
as outcomes of random experiments.

An experiment is the making of an observation. An experiment is said to
be random if its outcomes can not be predicted with certainty. For example,
the experiment of tossing a fair coin three times is a random experiment, since
the outcomes (heads or tails) cannot be predicted with certainty before each
toss. .

The first building block for a statistical science is the modeling of random
experiments (or random phenomena). We will proceed to motivate probability
spaces as general mathematical models for random ‘phenomena.

1.1 Games of Chance

Let us first take a closer look at random experiments which are familiar to
almost all of us, the games of chance.

Example 1.1 Consider the experiment of rolling a pair of dice and observing
the numbers shown. Suppose that you want to bet on “a sum.of 7”. O

In a game of chance such as this, we are interested in the “chances” of

“events” related to the gamé (since obviously, we are not flipping a coin to
predict the weather of tomorrow). Thus, two related questions are: what is

1



2 Chapter 1

chance? what is an event? Now, in above Example 1.1, obviously, you want to
know the “possibility” of winning, or more precisely, the “chance” of winning.
In fact, while it is possible that an outcome of the experiment could result in
a pair of numbers adding up to 7, you want to know more: how often does
such a situation occur since such information could provide an idea about the
chance of winning the bet? To obtain such information, we need to look at the
structure of the'experiment. While we cannot predict with certainty a specific
outcome, we can list all possible outcomes of the experiment. They are pairs
(z,9), z, y = 1,2,--- ,6, where z denotes the number shown on the first die
and y is the number shown on the second die. The collection of all possible
outcomes of the experiment is called the sample space of that experiment,
denoted by

.Q':{(.'B,y) 37»1/:1,27"',6}-

You are betting on the event that the outcome (z,y) is such that z +y = 7.
Specifically, that event A is the collection of all outcomes (z,y) in {2 such that
z+y=1717,1e. :
A={(z,y): z+y=T}

Thus, an event is a subset of the sample space 2. If the outcome is w = (2, 5),
say, then w € A, and A is realized or A occurs. Any subset of {2 defines an
event. Thus, associated with the sample space {2 is the collection of events
related to the experiment, and we denote it as A. In this example, A is the
collection of all possible subsets of £2 including the empty set @ (impossible
event). This collection is called the power set of £2, denoted by P({2).

In games of chance such as the above, humans perform the experiment
and we do know the structure of the game. In addition, aimed with an
(naive/common sense) intuitive idea about “chance”, we arrive, in a natu-
ral way, at describing the experiment by three basic components: the set of all
possible outcomes of the experiment, denoted as {2, ahd giving it a name, the
sample space of the experiment; events related to this experiment are subsets
of £2 so that the set of all subsets of {2 , denoted as P(§2) which we call it
the power set of §2, is the collection of events of interest; and we are able to
write down a formula for computing “chances” for events to occur, namely
a mapping P from P({2) to the unit interval [0,1]. In summary, our experi-
ment is described as a triple (2, P(£2), P). Let us take a closer look at this
mathematical model. Since {2 is the set of all outcomes of a given experi-
ment, it can be of various forms depending on experiments. For example, in
games of chance, 2 could be a finite or infinitely countable subset of the set of
non-negative integers N = {0,1,2,---}, and in an experiment like picking at
random a number in the interval [0,1], £2 is the uncountable set [0,1]. Next,
P(£2), as the collection of events in games of chance with finite sample spaces
as the example above, has some algebraic structure which allows us, among
. other things, to carry out computations of chances in some convenient way.
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The basic structure of a collection of sets like P(£2) is as follows. First, let us
specify basic notations in set theory. For A and B, subsets of {2, the comple-
ment of A, denoted by A€, is the set consisting of all elements in {2 that are
not elements of A; the union of A and B, denoted as AU B, is the set con-
sisting of all elements that are either in A or B or both, and the intersection
of A and B, denoted as AN B, is the set consisting of all elements that are in
both A and B. The empty set is denoted as @. Since the following properties
of P(£2) can be shared by other smaller sub-collection .A of subsets of §2, let
us put A = P(£2) to achieve generality later. The following are obvious for
A="P(£2):

(i) 2 € A;

(ii) if A € A, then A° € A; and

(iii) if A and B are both in A, then AU B € A.

Let us give a name to any collection A of subsets of {2 satisfying the above
three properties: A is called a field (of subsets) or an algebra (of subsets).

Thus, we specify the structure of our experiment as a pair ({2,.4) with
the meaning indicated in the above example. We are interested in finding the
chances for the events of interest to happen. If this is possible, then we say
that events are measurable, and hence we call (12, A) a measurable space. Next,
to complete our mathematical description of our random experiment, we need
to find a way to describe the random evolution of the experiment, i.e. a way
to assign chances to events, so that, even if we cannot predict with certainty
the occurrence of some specific event, we can at least specify its chance of
occurrence. .

The approach we are going to use for the example above is similar to
all games of chance which form the core of the so-called classical ‘probability
theory that provides mathematical models for random experiments having the
following characteristics:

(i) The sample space §2 is finite.

(i) Tt is reasonable to accept that all outcomes are similar as far as their
chances of occurrence are concerned. Put it differently, outcomes are equally
likely, i.e. all outcomes have the same chance to occur.

Our experiment of rolling a pair of dice makes the above characteristics
apparent. In this context, the chance of our event A to happen can be
quantified as the ratio of favorable outcomes over all possible outcomes, i.e.
#(A)/#(52), where #(A) denotes the cardinality (number of elements) of the
event A. Thus, the chance of A is defined to be the probability of A, denoted
as P(A) = #(A)/#(12).

Now we arrive at a construction of an assignment of probabilities to events,
i.e. P is a map, not from {2, but from A to the unit interval [0,1]. Thus we
can compute P(A) by the above formula for any given A € A.

Putting P together with the measurable space (12, A), we obtain the triple
(2, A, P), called a probability space, in which P is called a probability measure.
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A probability space is ¢ mathematical model for a random experiment. ]

In the context of classical probability theory, the assignment of probabilities
to events is based upon the above formula that involves counting techniques
and hence falls into the area of combinatorics. Students are encouraged to
practice their computations by doing as many as possible of the exercises at
the end of the chapter.

Next, from P(A) = #(A)/#(£2), we see easily that

(i) P(.Q) =1land |,

(ii) if AN B = @, then P(AU B) = P(A) + P(B).

The property (11) is called the finite additivity property of P, since it in-
volves only a finite number of events. If fact, (ii) is equivalent to:

(ii*) If Ay, As, -+ , Ap, n 2> 1, are pairwise disjoint, i.e. A,NA; =@, i # j,
then

(U >=Z (4;). (1.1)

Indeed, (1.1) is true when n = 2 by (ii). We proceed by induction. Suppose
that (1.1) is true for n — 1. Then

P (O Ai> = P KU Ai> UAn} =P (U Ai> + P(A,) by (i)
= ZP ) + P( n)—ZP(A

In classical probability, we can take any map P : A — [0,1] satisfying
properties (i) and (ii) above to be a candidate for quantifying the concept of
chance. Such a map is called a probability measure.

Having a specific formula for computing P(A), which we interpret as the
probability of event A to occur, do we really capture the concept of chance?
In fact, we have not even discussed the meaning of probability! we will not
enter the discussions on this issue from the frequency viewpoint or from the
subjective viewpoint, but instead, we follow an aziomatic approach to prob-
ability due to Kolmogorov (1933). However, evoking the frequency approach
will provide a simple motivation for discussing ({2, A, P) for more complicated
random experiments (see next section).

1.2 Experiments with Infinitely Many
Outcomes

In using statistics to gain information about, say, lifetimes of some type of
patients, we are in fact dealing with random experiments whose sample spaces
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2 are infinite. Any real number ¢ > 0 is the possible lifetime of a patient,
so that 2 = (0, 00), which is uncountably infinite. Experiments of this type
and more complicated ones are outside of the classical probability framework.
The most obvious thing to observe is that we cannot use the formula P(A4) =
#(A)/#(2) to assign probabilities to events. Let us examine the following
example. A

Example 1.2 Consider the random experiment consisting of picking a point
at random from the interval [0,1). The sample space of this experiment is -
clearly 2 = [0,1). In order to provide a (probabilistic) model for this ex-
periment, we need to specify a way to assign probabilities to events of this
experiment.

This experiment has a flavor of a characteristic of experiment in classical
probability theory, namely that “outcomes are equally likely”. Thus instead
of cardinality of a subset A C {2 (viewed as the event that outcome lies in
A), we can use the “length” of A. While it is clear that the length of (2, i.e.
the length of the interval [0, 1), is one what it is not clear is the length of an
arbitrary subset A of 2! Intuition would suggest to define P(A) as the length
of A. But it is here that a technical difficulty arises. The length of an interval
A = [a,b] is b — @, and the length of a subset A which is a countable union
of disjoint intervals, say, A = |J,51[an,bn], is > ,5,(bn — an). Then, roughly
speaking, the question is: what is the largest class B of subsets of {2 for which
their lengths can be defined? These subsets will be called measurable sets.
They correspond to events where probabilities can be assigned. Of course, any
subset A of {2 is an event in the real sense of the term, namely “the outcome
lies in A”, but we are obviously interested only in events for which we can
assign probabilities.

The above technical problem is solved in analysis, in fact in Lebesgue
measure theory. We will return to this in more details in Chapter 2. For now,
it suffices to say this. The class B is strictly smaller than P(§2). - Thus our
collection of events (of interest) should be A = B. Moreover, similar to P(42),
this A satisfies the following properties:

(i) 2 € A

(ii) if A € A, then A° € A; and

(iii) if A, € A;n > 1, then |5, An € A.

The property (iii) is stronger than the corresponding property of a field (or an
algebra). ’

A collection A of subsets of 2 satisfying (i), (ii), and (iii) above is called
a o-algebra (or o-field) of subsets of 2. The prefix o refers to the infinitely
countable property in (iii). Thus we obtain a measurable space (2, A), where
2 is a set and A is a o-field of subsets of (2.

Next, we need to specify P : A — [0, 1] to complete our description of our
experiment of Example 1.2. As stated carlier, for A € A, P(A) will be taken
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to be the length of A. Due to properties of the concept of length, P satisfies
the following properties:

(a) P(2) =1 and

(b) If {A,, n > 1} is a sequence of finite or infinitely countable pairwise
disjoint elements of A, then

U.4n ] =D P(4n)

n>1 n>1

The property (b) is called the o-additivity of P.

A probability measure is a map P : A — [0, 1], satisfying (a) and (b) above.
The triple (£2,.A,'P) is called a probability space which provides a model for
a random experiment. Note that this description covers the case of classical
probability, and in fact, is general enough for all types of random experiments.

In summary, the probabilistic model of an arbitrary random experiment is
a probability space (2, A, P), where {2 is a set, A is a o-field of subsets of (2,
and P is a probability measure defined on A.

Remark. The sample space [0,1) is the same as the sample space {0, 1N
of the experiment of tossing a fair coin indefinitely, i.e. {2 is uncountable. In
such an experiment, we are interested in a subset of £2 of the form

=uni-

kzn

xﬁw)—%‘<e},

where ¢ > 0, and zx(w) denotes the proportion of number of 1’s (heads) in
the first k tosses in w. The reason is that A is the subset of {2 on which
zk(w) — 1/2 as k — oo. Thus we would like to compute P(A). For that, we
need A to be in A as well as extending the finite add1t1v1ty property of P to
o-additivity. O

Specifically, a stronger property for A is:

UAnGA forall A,€ A n2x=1

nzl

And the (finite) additivity property of P should be strengthened to the count-
able case, namely, for all A, € A, n > 1, pairwise disjoint, i.e. A, N Ay =
n#m,

) =3 Pia

nzl nzl

‘Thus, we arrive at the probability space (£2, A, P), with the new properties,
as a mathematical model for general random experiments. With this model,
it can be shown that, for an uncountable sample space like 2 = [0,1), it is
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impossible to define probability measures on its power set P(£2), so that the
domain of P (i.e. events) is strictly contained in P(2). See Billingsley (pages
45-46, 1995) for details.

1.3 Structure and Properties of Probability
Spaces

Motivated by extreme cases for random experiments, as above, we arrive at
abstract models (general models) for arbitrary random experiments, namely
probability spaces (2,4, P)! In Chapter 2, we will give examples of proba-
bility spaces in many applications. But here, we need to take a closer look
at probability spaces, in the abstract setting, for computation purposes in
applications. ,

Let £2 be a set which is intended to be the sample space of some random
experiment. The collection of events is some o-field . A. How A is chosen
depends very much on the structure of 2. There are two trivial o-fields of
subsets of {2, namely P(£2) and {@, 2}, for which

(2,2} CACPW).

That is to say {@, 2} is a sub-o-field of A, which is, in turn, a sub-o-field of
P(£2). Later, in applications, we will deal with many non-trivial sub-o-fields
of A, each such sub-o-field represents some information obtained, say, up to a
certain time, and will play an essential role in prediction problems.

Note that o-fields are domains of probability measures and their construc-
tions are in general delicate. For each sample space (2, we need to specify a
o-field A of its subsets. Then any P : A — [0,1] will be viewed as a model
for the random experiment under study. As we will see, in general it is quite
plausible to be able to assign probabilities to simple subsets of §2 , e.g. inter-
vals when 2 = R. Then the specification of an appropriate A can be done
as follows. Let C be a collection of (simple) subsets of {2. Since C C P(£2),
the collection of o-fields which contain C is not empty. Moreover, it is easy
to verify that any arbitrary intersection of o-fields is'a o-field. Thus, we have
the following definition. ‘

Definition 1.1 The o-field generated by a class C C P(S2) is the smallest
o-field containing C. :

Remark. The partial order relation between o-fields is, of course, inclusion.
The o-field generated by C, usually denoted as o(C), is precisely the intersec-
tion of all o-fields containing C. In the next chapter, we will consider the case
where 2 = R, the set of all real numbers. O .
The following analysis is useful for constructing o(C). First, observe that
here we are dealing with sets rather then points (say, of Euclidean spaces).
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The space P(§2) is partially ordered by the inclusion C (contained in). By
analogy with limit concepts of real numbers, we consider limits of sequences
of sets as follows.

Let {A,, n > 1} be a sequence of subsets of .Q

(i) If {A,,n > 1} is said to be non- decreasing, i.e. Ap C An+1 forn > 1,
in symbol' A,, /*, then define

lim A, = U A,

n—oQ
nzl

Remark. This concept of limit for sets can be also expressed in terms of their
indicator functions:

For A C {2, we put it in a bijective correspondence with the function
4 §2— {0,1}, called the indicator function of the set A, defined as

1 if weAd
I =
AWw) {0 i we A

Then, lim,,_, A, corresponds to

lim T4, (w) =1y ., 4, (W) forall we .

n—o0

Note that in mathematics indicator functions of sets are usually called char-
acteristics functions. In probability theory, we use another terminology since
characteristic functions are reserved for Fourier transforms of probability dis-
tributions (see Chapter 4). O

(if) If {A,,n > 1} is said to be non-increasing, i.e. Any1 C Ap forn 21,
in symbol A, \,, then define

lim An = () 4n-

n—o0
nzl

(iii) For arbitrary {An,n > 1}, we let

liminf A, U ﬂ Ap and hmsupA ﬂ U Ag.

n—0o0
n>lk>n n2lkzn

1If
liminf A, = limsup A,,

n—00 n—oo

then this common set is taken to be lim,_,oo An. Alternatively,

lim I, (w) =1 iim 4,(w), foral wef
n—0o0 n— 00
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Obviously, any o-field A is a monotone class of sets, i.e. if A, € A n>
and either {A,,, n > 1} is non-decreasing or non-increasing, then lim,_,o, An
A. Indeed, if {A,, n > 1} is non-decreasing, then

1
€

lim An=UAneA

n-—oo
n>zl
.

by definition of A. If {A4,, n > 1} is non-increasing, then

c

nlin;oAn=ﬂA"= U4z,

nzl nzl

by DeMorgan’s law (see Exercise 1.8), and hence is in A.

A field may not be a o-field, but a field .4 which is also a monotone class
is a o-field. Indeed, let A, € A, n > 1. Since A is a field, we have B,, =
UL, Ai € A, for all n > 1. But {B,,,n > 1} is non-decreasing, so that

lim B, = |J B, €A,

n—oo
nzl

since A is also a monotone class, by hypothesis. But

U Bp= | A
a2l n>1

\

The following results is useful for constructing generated o-fields.

Theorem 1.1 (Monotone Class Theorem) Let C be a field of subsets of
. £2. Then o(C) is precisely the smallest monotone class containing C.

Proof. Let M denote the smallest monotone class containing C. Since o(C)
is a monotone class containing C, we have that M C ¢(C).

To obtain the reverse inclusion, it suffices to show that M is a field, in
view of the previous analysis. First, for A C 2, let

B(A)={BeP(2): AUB, ANB°, BN A° € M}.
Then B(A) is a monotone class. Indeed, let B, € B(4),n > 1, be non-

increasing, then

AUl Ba| =[)(AUB.) €M,

nzl n2l



