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PREFACE

HIS isintended as a companion to the Cambridge Tract No. 24, on

Invariants of Quadratic Differential Forms. As its name implies
it contains a set of axioms for differential geometry and develops their
consequences up to a point where a more advanced book might reasonably
begin. Formulae appear only incidentally and the reader is supposed
to obtain those needed from the tract No. 24, or from other books and
articles on the formal side of the subject.

Analytical operations with coordinate systems are continually used
in differential geometry, a typical process being to “choose a coordinate
system such that....” It is therefore natural to state the axioms in
terms of an undefined class of “allowable” coordinate systems, and to
deduce the properties of the space from the nature of the transformations
of coordinates permitted by the axioms.

The axioms for differential geometry in general are preceded by more
special sets of axioms in which the structure of a space is defined by an
appropriate class of “preferred” coordinate systems. Thus Euclidean
geometry is characterized by the class of rectangular cartesian coordinate
systems. The “preferred” coordinate systems constitute a sub-class of
the “allowable” coordinate systems for any one of these spaces. The
former class is small, so as to characterize the structure of the space,
and the latter is large, so as to permit freedom of analytic operation.

These earlier axioms are found to be adequate for the differential
geometry of an open simply connected space, the most elementary
theorems of which occupy the greater part of Chaps. 11—v. The more
general axioms, in terms of allowable coordinate systems and without
restrictions on the connectivity of the space, are given in Chap. vi. We
believe that they provide an adequate foundation for any of the differen-
tial geometries which are now being studied. The complete theory which:
should be constructed out of these axioms would be & combination of
infinitesimal geometry and analysis situs. In the final chapter we outline
some of the questions which arise, in the hope that some of the readers
of this tract may participate in the construction of a branch of mathe-
matics which we are convinced is of great importance.

0.V.
J.H.C. W.

PRINCETON, N.J.'
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CHAPTERI

THE ARITHMETIC SPACE OF » DIMENSIONS

1, Arithmetic points.

Analysis habitually borrows not only terminology but also methods
and results from geometry. In the present chapter we mean to indicate
how this can be done without running into a vicious circle in the
application of analysis to geometry. We shall be particularly concerned
with the ideas clustering about the notion of linear dependence.

We shall presuppose the contents* of @. F. Chap. 1, and in particular
Cramer’s rule (@. " p. 6), by whlch a set of linear equations

(1) =3 aja’
J
can be solved to yield
(1'2) s’lfi=2¢}:y71

provided the determinant _
a=|aj|
is not zero. With the notation of @. F.,

(1-3) w'=1Ai,

where A' is the co-factor of the element a7 in the matrix Ila ||, and o is
called the normalized co-factor of a’

An ordered set of n realt numbers (2, ..., ") will be called an
arithmetic point, and 2, ..., 2" its components. The set of all arith-
metic points, for a given value of n, will be called the arithmetic space
of n dimensions. Asin Q.F. we shall denote an arithmetic point by a
single letter #, and in considering several arithmetic points shall
distinguish them by subscripts; thus ., will stand for @5 - 22).

In Euclidean geometry, for instance, all points are alike, but in the

arithmetic space each point has an 1nd1v1dua11ty of its own. In particu-
lar the points (0, ..., 0),and (1, 0, ..., 0), ..., (0, ..., 0, 1) will be called

* This book is intended to run parsllel to the Cambridge Tract, No. 24, by
O. Veblen, called Invariants of Quadratic Differential Forms, which will be referred
to as Q. F.

t There is nothing to prevent our taking numbers from any field, but we shall be
content to use the real number system of analysis.

vw



2 THE ARITHMETIC SPACE OF n DIMENSIONS  [CHAP. I

the origin and unit points respectwely We shall denote the origin by e,
and the unit points by ¢, ..., e,.

In many books on analysis an ordered set of numbers (24, ..., 2") is
called simply a point (without any adjective). On the other hand in
books on algebra* it is often called a vector. Two fundamental opera-
tions in vector algebra are multiplication by a number and addition.
More precisely, if # is an arithmetic point (vector), and if @ is a number,
then a is the point

azx = (ad', ..., az"™),
while if 2 and 'y are two points, # +y is the point

@+, ..., 2"+ ™.
Combining these two operations we can define the difference of two
points, and in general any linear combination,

£, + ... + Py,

of % points, x,, ..., 2. The theory of linear dependence has to do with
properties which can be stated in terms of these two operations.

2. Linear dependence.

The points given byt

(2'1) =tk (x=1,...,m)
are said to be lmearly dependent on &, ..., &n. According to this
definition the origin is linearly dependent on any set of points. A set of
two or more points is said to be linearly independent if no one of them
is dependent on the rest. To complete the definition we say that a single
point is linearly independent if it is not the origin.

A set of points, @y, ..., Zn, 1s independent if, and only if, the relation

(22) s2L =0
implies s'=...=s™=0. For if one of these coefficients ¢, say, did not
vanish, (2'2) would give
. st i
w{=—s—1 &y — ... - x5,

A relation of the form (2°1), on the other hand, is a special case of (2:2).
Lt @, ..., an be any set of points. Either a, ..., ax all coincide with

* E.Study, Einleitung in die Theorie der Invarianten linearer Transformation auf
Grund der Vektorenrechnung, Braunschweig, 1923; also H. Weyl, Gruppentheorie
und Quantenmeckanik, Leipzig, 1931.

t As in Q. F. a4 repeated index will imply summation. Roman indices will in-
variably run from 1 to n, while the range of Greek indices will be indicated in
the text.
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&
the origin or one of them, a,, say, is independent. Either they will all
depend upon a, or the set a,, a,, say, will be independent. Proceeding
in this way we shall arrive at an independent set a,, ..., @,, say, upon
which all the points @, ..., @, will be linearly dependent. We need a
criterion to determine p, and we get this by considering the matrix

(QF.p. 4),

1 1 1

ay, @3, ... G,

2 2 2

. al' a2’ am
”a’;;” = : : |

n 7 n

az, ai, ... a

whose columns are the m arithmetic points.

If all the (p + 1)-row determinants (§. F. p. 9) vanish, but at least one
p-row determinant does not, the matrix is said to be of rank p. The
fundamental theorem of linear dependence is:

LS p is the rank of the matriz || a} ||, the points ay, ..., ay are all de-
pendent upon p of them which are themselves independent.

To prove this, first consider the case where m = n. The matrix || ||
* 18 of rank p, and without loss of generality we may suppose the deter-
minant
' azlaﬁl, A p=1, ..,p)
to differ from zero. If p=m 1t follows from Cramer’s rule for solving
linear equations that the points a,, ..., @, are independent. For, since
a =+ 0, the equations '

a;zﬁ:O, (aJB—:l’ "'!‘m)
have the unique set of solutions (0, ..., 0). o
If p < m the points a,, ..., a, are shown to be independent by the

argument we have just used. Let Al, ..., A2 be the co-factors of
@}, -+, a} in the matrix

1 11
a, ... a}, a.
p »
oy, ... ay, ao
7 ) i
@&, ... a, al

The ‘determinant of this matrix is

(=1) aal + Alaj, A=1, ..., ).
For ¢ = p this vanishes since two rows have equal elements, and for ¢ > p
it, vanighes since the rank of [{ &} || is p. The coefficients 4 and a do

1-2



4 THE ARITHMETIC SPACE OF n DIMENSIONS [CHAP.1

not depend on the elements a¢, ai, ..., af, and so, writing
A} ja= (-1 2,
we have
(2'3) al =xrd, (c=p+1, .., m).
If m>n we consider the points ag=(a}, .., a3, 0, ..., 0), in the arith-
metic space of m dimensions, We can then apply the above argyment

to obtain the relation (2'3), and the theorem is established for all values
of m.

3. Linear sub-spaces.

If @, ..., @ are k linearly independent points, the set of points lin-
early dependent on them will be called an arithmetic linear k-space®,
and the points #,, ..., @i will be said to span the linear £-space defined
in this way. Thus a linear 1-space consists of the points whose
components are proportional to those of a given point, and may
conveniently be called an arithmetic straight line through the origin.

From the equations

(3'1) Z=zl, A=1, .., k)
which define a linear £-space, X, it follows that to each point (2, ..., t*)
of the arithmetic space of £ dimensions corresponds a point of X7, the
points ¢, and e, ..., ¢ corresponding to the origin and #,, ..., 2
respectively. Moreover, to each point of X} corresponds just one point
in the k-dimensional arithmetic space. For if ¢ and ¢, are points in
the latter corresponding to the same point in X, we have

Bt =i at,
or (B~ ai=0.

But @y, ..., @ are independent and 80 ¢, =1¢,.

Equations of the form (3°1), therefore, define not only a linear £-space,
but a linear k-space which is in (1-1) correspondence with the arithmetic
space of k dimensions. Such a correspondence is called a parameteriza-
tion of the linear %-space.

All points linearly dependent on m points a;, ..., @n, in a linear
k-space, X, are contained in Xy. For @y, ..., an are given by equations
of the form

a‘ = tB zj\ ,

* We shall define flat sub-spaces in general in § 7 below. The linear sub-spaces
all eontain the origin. They owe their importance to the fact that (with the nota-
tions explained in §1) if a linear k-space contains two points #; and z,, it also
contains x, +r,, We can express this by saying that linear k-spaces are closed under
addition.
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and any point linearly dependent on @, ..., a, is obviously dependent
on &, ...; ;. This may be called the transitive law for linear depend-
ence.

If the points #y, ..., 2% span the linear Z-space, X}, there is no other
linear £-space containing these points. For if v, ..., 9, span a linear
k-space, Yy, containing z;, ..., #x, we have

(32) oy =thyt.
If thedeterminant |} | were zero there would be a relation of the form
s+ tz =0,
in which ¢, ..., &* were not all zero. This would imply
sSai=0
and a,, ..., 2; would not be independent. For each value of ¢, therefore,

the equations (3'2) can be solved by Cramer’s rule to yield equations of
the form '

(3°3) wh=T\z..

From the transitive law for linear dependence, and from (3°2) it follows
that each point of X lies in Y. Similarly it follows from (3'3) that
each point of ¥ lies in X;. They are, therefore, identical. We can
express this by saying that a linear Z-space is spanned by any set of £
independent points contained in it, and it follows that a linear %£-space
does not contain a set of / independent points, where {>%. For the
definition in §2 implies that any % points in a set of { independent points
are themselves independent, and would therefore span any linear £-space
containing the larger set.

The theorem of §2 can now be stated in the form: If p is the rank
of @ matriz || x,f; |, the points 21, ..., Zn are all contained in a lincar
p-space but not in a linear g-space, where q <p.

4. Linear homogeneous transformations.

Any correspondence under which each point, , in a set of points X
corresponds to a unique point, ¥, is called a single valued transformation
of X into Y, where Y is the set of points to which the points of X
correspond. We may denote the transformation by

z-—y.
If no two distinct points in X correspond to the same point in Y, the
transformation « -y will be called (1-1), or non-stngular. If z—>y is
any non-singular transformation there exists a unique single-valued
transformation, ¥ — 2, called the inverse of 2 —y.
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A transformation which is given by equations of the form
(41) ¥ =aa
is said to be linear and homogeneous, and is non-singular if the deter-

minant a =|af| is not zero. For if @+ 0 the equations (4'1), which are
identical with (1-1), can be solved to obtain the inverse transformation

(4'2) @t = oy,
where afi is the normalized co-factor of a .

Any linear transformation #—y, whether singular or not, will carry
any point which is dependent upon a given set, 21, ..., @, into a point
which is dependent upon g, ..., ¥z, where z,—>y,. For a point z, given by

(43) =i,
goes into a point ¥, given by

(4°4) y=didd=aitrzi=y.

Not only the relation of linear dependence, therefore, but also the
parameters £, ..., ¢, by which it is expressed, are unaltered by linear
transformations.

The unit points are carried into the colnmus of the matrix || ]|, and
if p is the rank of the latter these columns will be contained in a linear
p-space X, exactly p of them being independent. Hence the whole
arithmetic space will be carried into X, and any two points, #;, and #,,
such that

aj' (.Z‘%——,z‘i)ZO,
will be carried into the same point in X,. The condition a0 is,
therefore, not only sufficient, but also necessary in order that the
transformation given by (4°1) shall be non-singular.

An independent set of points, #,, ..., &, 1s carried by a non-singular
linear homogeneous transformation®, # -y, into an independent set
Y1y ---» Y. For if some of the latter were dependent upon the others
we could apply the inverse transformation, ¥ — #, to show that the same
was true of #,, ..., #;. Linear homogeneous transformations, therefore,
carry linear %-spaces into linear %-spaces, and from the theorem in §2
it follows that the matrices

ll22ll, and [yl = lai{ll,

have the same rank.

* In this and the following chapters, all transformations are to be taken as non-
singular unless the contrary is stated.
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Cramer’s rule depends upon the fact that if o are given, and if ¢ +0,
there exists a matrix || ;|| which is uniquely determined by the condition

(4'5) 8} = a;; a’; .

If we regard the columns of || &% || as arithmetic points this states that
there is just one linear homogeneous transformation which carries a
given set of » independent points, «,, ..., @,, into the unit points
€1y vy On

As a corollary, we see that there is at least one linear homogeneous
transformation which carries any set of % independent points, a,, .-, @,
into the unit points e,, ..., ¢,. For we can find »— % points a4, ---, @
such that @, ..., @, are linearly independent (if the determinant |a}|,
(A, p=1, ..., k) is not zero we can take @y, = ¢41, ---, @ =€) and there
is just one transformation in which a; =e¢;. A transformation which
carries an independent set of points a,, ..., @ into e, ..., é, will carry
the linear £-space spanned by the former into that given by

{y":t", (A=1, ..., k)

(4°6)
y°=0, (o=k+1,...,7)

that is to say, into the set of all points satisfying the equations
yk+1___ O, cees yn:()_

5. Homogeneous linear equations.
There is a linear homogeneous transformation
(51) ?/’26‘: z?,

which carries a given linear k-space, X%, into the linear £-space given
by (4'6). It follows that X consists of those, and only those points,
which satisfy the set of » — % linear homogeneous equations

(5°2) a52’=0 (c=k+1, ..., n)
Again, if (5°2) is any set of n—% linear homogeneous equations in
n variables, 2; such that the matrix
1EAT
is of rank » — £, a transformation (5°1) can be found which carries the
set of points satisfying (5°2) into the linear £-space (4'6). Since linear

k-spaces are carried into linear £-spaces by linear homogeneous transfor-
mations, it follows that the solutions of (5°2) constitute a linear £-space.
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If
(5.3) bjwj'—'oy (a=11 teey m)

is any set of linear homogeneous equations, such that the rank of the

matrix || 57 || is r, there are » of these equations, which we may suppose
to be

(54) B 2i=0, (o=1,...,7)

such that the matrix ||67|| is of rank r, and the remaining equations
are linear combinations of (5'4). Hence the points satisfying (5'4) satisfy
the full set of equations, and of course, any point satisfying (5'3) satisfies
(5'4). Bythe last paragraph the points satisfying (5°4) constitute a linear
{n —r)-space. Therefore the solutions to a set of linear homogeneous
equations constitute an (n— r)-space, where r is the rank of the matriz
of the coefficients.

Any set of points which span the (n — r)-space is called a complete set
of solutions.

Taken with the description of the way in which a linear %-space is
spanned by sets of £ independent points, this summarizes the theory of
linear homogeneous equations.

6. Translations.

A transformation given by equations of the form

(6°1) y=a+a
is called a ¢ranslation. It is obvious that translations are non-singular
and that the inverse of a translation is a translation; also that if x =y
and y—2z are translations, the resultant transformation z =2z is a
translation; also that there is just one translation, namely that given by

y'=a'+9,- =,
which carries a given point 2, into a given point ¥,.

7. Flat sub-spaces,

Any set of points which corresponds under a translation to & linear
k-space will be called an arithmetic flat k-space. For k=0, an arith-
metic flat £-space is a single point; for £=1 it is called an arithmetic
straight line, for =2 a plane, and for A= —1 a hyperplane. If one
of two flat £-spaces can be carried by a translation into the other, they
are said to be parallel. From the transitive property of translations it
follows that flat %-spaces are carried by translations into flat %-spaces,
and that two flat Z-spaces which are parallel to a third, are parallel to
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each other. Through any point #, there is a flat £-space parallel to a
given linear %-space, X;. This flat £-space is obtained from X by the
translation which carries the origin into #,. Any flat Z-space is parallel
to itself by this definition, since the identical transformation, which
leaves each point unaltered, is a special case of a translation.

If we apply the translation given by

(71) Y=o+

to the linear Z-space whose poiuts satisfy (n —£) linearly independent
linear homogeneous equations

(12) @ =0, (o=k+1, ..., n)

we find that any flat %-space is the set of points satisfying a set of
equations of the form

(7°8) a;y’=ag.
The constants a, are given by

a: = a_‘; %’

and will be zero if, and only if, the point %, to which the origin is carried
by the translation is in the linear £-space (7°2). Similarly, if ¥, and y,’
are any points in the flat A-space (7-3), the translation y,—> gy, carries
this flat £-space into itself. We recall that a flat k-space, Y3, was
defined as the image of a linear £-space, X, under a translation e, = ¥,
and it follows that Y is equally well defined as the image of X under
the translation ¢, —,, where y,/ is any point in ¥,. Therefore any
pair of flat k-spaces which are parallel to each other and have a commeon
point are identical. Hence there is one, and only one, flat k-space which
pesses through a given point and is parallel to a given flat k-space.

Conversely, if we have a set of n~ % linear equations of the form
(7°8), such that the matrix of the coefficients on the left,

Ha 11,
is of rank (n—F), they are satisfied by a set of points which constitute
a kspace. To prove this, we first observe that we can transpose £ of
the variables, v, to the right of (7°3), leaving on the left n — £ variables,
y, the determinant of whose coefficients is not zero. Then substitute
arbitrary values for the y's on the right, solve for the remaining ones
by Cramer’s rule, and we have a set of values g}, ..., ¥} which satisfy

(7-3). Now apply the translation ¥ -« inverse to (7:1), and we find
that the set of points satisfying (7-3) is carried into the set of points
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satisfying (7-2). In other words, the solutions of (7°3) satisfy the
definition of a flat &-space.

By definition, a linear £-space is a set of points satisfying the equa-
tions (31). Applying the translation (7°1) we find that a flat k-space
in general is a set of points satisfying equations of the form

(74) y=yi+ @i—9l), (=1, k)

Hence the theorem which we have just proved asserts that the solu-
tions of a set of equations of the form (7'3) are given by equations of
the form (74), and conversely, any set of points, ¥, given by equations
of the type (7'4), are the solutions of a set of equations of the form (7°3).

The flat #-space (7'4) contains the points %o, %1, -+ > ¥s- Substituting
the right-hand side of (7°4) into the right-hand side of the formula for
a homogeneous linear transformation, y =2, it follows that (7-4) is
- carried by y — 2 into a flat k-space through the points 2, 21, ««, %)
where y,— 2,.

8. Non-homogeneous linear equations.
Consider a general set of linear equations
(8°1) o} @) = ag, (¢=1, ..., m)
and let us refer to
Haj 1|
as the matrix of the coefficients, and to the matrix
Ha‘:“, (¢=0,1, ..., »)

with the column a® adjoined, as the augmented matrix. Let r be the
tank of the matrix of the coefficients and s the rank of the augmented
matrix. Naturally, s = 7. We may assume without loss of generality
that the rank of the matrix

Hall, (=1,..,7)
of the first » of the equations (8'1) is r, and therefore that the equations
(82) ala’ =a;
are satisfied by all the points in some flat (n — 7)-space, and only by
those. If s> r there is an equation
(8'3) a; &’ = ap
in the set (8-1), such that no relation of the form
(8°4) Gg=prta, (A=1,..,7;0=0,1,...,7)



