/

|

N\

R T

4
0
]

ASCAL

SECOND EDITION

James L. Richards

Bemidji State University

ACADEMIC PRESS COLLEGE DIVISION
Harcourt Brace Jovanovich, Publishers

Orlando San Diego San Francisco New York London
Toronto Montreal Sydney Tokyo Sao Paulo

Copyright © 1986 by Academic Press, Inc.

All rights reserved.

No part of this publication may be reproduced or transmitted

in any form or by any means, electronic or mechanical, including
photocopy, recording, or any information storage and retrieval sys-
tem, without permission in writing from the publisher.

Academic Press, Inc. .
Orlando, Florida 32887

United Kingdom edition published by
Academic Press, Inc. (London) Ltd.
24/28 Oval Road, London, NW1 7DX

ISBN: 0-12-587522-3
Library of Congress Catalog Card Number: 85-71911
Printed in the United States of America

- e

Preface

Pascal, Second Edition, reconfirms my philosophy of teaching computer science.
The guiding principles of the first edition remain at work in this revision. Partic-
ular sections have been changed to improve the original or to bring it up to date.
The strengths of the first edition, which depend greatly on my own beliefs that
time is well spent in careful preparation, frequent practice of skills, and gradual
accumulation of those skills, are still in evidence. In its first edition, Pascal dem-
onstrated its worthiness in the classroom. With this new edition, my concern was
not how to teach, but what to teach. Specific changes have been made in line with
contemporary trends, making this new edition especially effective and thorough.

One of the strengths retained from the first edition is that the student need not
have prior programming experience. The beginning chapters are paced to provide
a gradual introduction to programming concepts and fundamental elements of the
Pascal language. Alternately, the student with some programming experience can
proceed fairly rapidly through at least the first four chapters. Students who have
successfully studied high school algebra and geometry should easily understand
the mathematical examples.

This book’s main purpose is to explain how to design and construct computer
programs using Pascal. Learning the specifics of a programming language is a
substantial task for anyone. Beginning programmers are faced with having to
learn programming methodology simultaneously with the syntax of a pro-
gramming language. The development of efficient and effective programs requires
problem-solving skills that are reinforced by studying examples and by working
on programming problems. This new edition, even more than the first, emphasizes
these necessary elements.

Algorithms

Pascal, Second Edition, repeatedly encourages the development and Stepwise
refinement of algorithms that serve as program models. All algorithms in the
examples are in a narrative form that incorporates elements resembling specific

ix

x Preface

Pascal constructs (a form of pseudocode), thereby easing the transition from an
informal outline to a precisely worded program. Only a few formal flowcharts
remain from the first edition to demonstrate the effects of particular Pascal in-
structions, not to serve as outlines for program segments or modules. Although I
have used a consistent style in presenting the algorithms, the student need not
adopt this style. Teachers of programming should be aware that students face a
formidable task in remembering formal rules imposed by a programming lan-
guage. To expect the student to conform to rigid rules for preparing preliminary
algorithms often discourages the student from outlining before coding.

Programming Examples

Many program segments and short program examples demonstrate the use of
particular Pascal instructions as they are introduced. Most program listings are
followed by one or more samples of printed output generated by the program.
Because the various implementations of Pascal lack uniformity for reading and
writing data, the student may need to slightly modify some of the example pro-
grams before running them on a particular system.

Case Studies

Fourteen case studies provide extensive examples of methodical program devel-
opment. These case studies appear throughout the text, beginning as early as
Chapter 3. Each one details the step-by-step design and implementation of a
complete Pascal program, starting with a broad description of the requirements
for the program.

Exercises and Programming Problems

Nearly 900 class-tested exercises and programming problems appear; many are
new or revised forms of exercises and problems in the first edition. The exercises
are grouped at the ends of the sections so the student can test his or her under-
standing of that section. Appendix E contains answers for selected exercises. More
extensive programming exercises appear as Programming Problems in a separate
section at the end of the chapter—many of these problems are new. The problems
cover a wide range of programming applications (e.g., processing television rat-
ings, creating a technical dictionary) so that each student may select problems of
special interest.

Preface xi

Programming Projects

Appendix F contains descriptions for eight programming projects. The project
requirements, suggested enhancements, and general descriptions have been re-
stated to more clearly delineate the scope of each project. Even more extensive
than the programming problems at the ends of chapters, these projects are more
open-ended so the instructor can vary the breadth and complexity of project
assignments.

Character Sets

Example programs and program segments use the full ASCII character set. Stu-
dents using Pascal implementations that employ some subset of the ASCII charac-
ters or some other character set may need to revise the example programs to run
them on their systems. Appendix A lists the ASCII, CDC, and EBCDIC characters.

Program Modules as Procedures

Pascal procedures (without parameters), introduced as early as Chapter 3, facili-
tate the modular development of programs. This represents a significant change
in the approach taken in the first edition of Pascal in which subprogram (pro-
cedure and function) declarations were not discussed until Chapter 8. In this new
edition, Chapter 7 fully covers subprograms.

Syntax Diagrams

Syntax diagrams occur throughout the text to define precisely elements of the
Pascal language. The current popularity of these diagrams necessitates that poten-
tial computer scientists understand what they mean. Beginning programmers are
likely to be intimidated by a syntax diagram. Thus, instructors may wish to spend
extra time explaining syntax diagrams and their use in verifying the validity of
program entities.

Print Enhancements

Boldface is used to identify Pascal reserved words in programs appearing in the
text. In Chapter 2, which introduces string data, apostrophes—not single quota-
tion marks—have been used in the regular text to show that char constants are

Preface

formed by enclosing the data with the ASCII decimal 39 character. This has been
done to avoid confusing the student with different variations of the same ASCII
character when he or she is first learning the syntax of character strings. Color is
used functionally to indicate operations performed by the user.

Pascal Implementations

No one text is the final authority for every implementation of the Pascal language.
This text follows the standard for Pascal established by the International Stan-
dards Organization (ISO), which allows certain extensions and variations from
one implementation of Pascal to another. Two appendixes provide additional
information about the Pascal language:

1. Appendix G describes several advanced features of Pascal that are included in the
ISO Standard (e.g., statement labels, the goto statement, procedures and functions
as parameters, and conformant arrays).

2. Appendix H lists peculiarities of three popular Pascal implementations (Apple
Pascal, Turbo Pascal, and VAX-11 Pascal).

Course Structure

One ten-week quarter should allow sufficient time to cover material in the first
eight chapters as well as selected topics from the remaining three chapters. When
this book is used for a semester course, there should be ample time for a detailed
discussion of record structures in Chapter 9. Courses extending to two terms can
include all eleven chapters and at least some of the advanced features mentioned
in Appendix G. Individual or group programming assignments using the projects
described in Appendix F can be formulated to give students practice in developing
programs that require extensive design.

Beyond Pascal

For the student pursuing the study of computer science beyond a single course in
programming with Pascal, the recommended next course is one emphasizing the
design and use of data structures, guided by data abstractions and software-
engineering principles. The closing chapters of Pascal, Second Edition, provide the
groundwork for an in-depth study of more complex data structures and their
applications. A follow-up text building on this groundwork is in preparation.

Preface xiii

Instructor’'s Manual

A supplementary manual for instructors is available from Academic Press. This
manual has four parts: (1) answers to exercises that are not in Appendix E,
{2) notes for teachers, (3) a collection of test questions, and (4) transparency
masters for selected diagrams and algorithms.

Acknowledgments

Many people provided help, advice, and encouragement that aided me in the
preparation of this text. I am indebted to those who carefully reviewed the manu-
script and offered many suggestions that resulted in significant improvements in
the accuracy and presentation of the material. They are George Beekman, Oregon
State University; Howard Binnick, City University of New York & Bramson ORT
Technical Institute; Sarah Brooks, Mohawk Valley Community College; Wilber
P. Dershimer, Jr., Seminole Community College; Louis Gioia, Nassau Community
College; Jim Ingram, Amarillo College; Russell Lee, Allan Hancock College;
C. William Marsh, University of Cincinnati and Raymond Walters College; Bro.
Ernest Paquet, f.i.c., Brothers of Christian Instruction at Walsh College; Margaret
Anne Pierce, Georgia Southern College; and Tom Richard, Bemidji State Univer-
sity. | am especially grateful to Professor Susan Hickey for preparing the sum-
maries of Apple Pascal, Turbo Pascal, and VAX-11 Pascal that constitute an
invaluable Appendix H, and for writing the Instructor’s Manual. Finally, 1 must
thank my family for their continuing encouragement, understanding, and
patience.

Contents

Preface

1. An Introduction to Computer Systems and
Programming

1.1 Computer Systems
1.2 The Program Development Process
1.3 Screen Editing Principles

2. A First Look at Pascal

2.1 Basic Elements of a Pascal Program

2.2 Programs Using Declared Identifiers

2.3 Methodical Program Design and Implementation
2.4 Programming Problems

3. Program Expressions and Modular Structure

3.1 Arithmetic in Pascal

3.2 Arithmetic Expressions

Case Study: Concrete Cost for a Sidewalk

Case Study: Distance between Two Moving Ships
3.3 Program Modules and Pascal Procedures
Case Study: Retail Pricing

3.4 Programming Problems

4. Input and Output Statements

4.1 Batch Input

4.2 Interactive Input

4.3 Output

4.4 Programming Problems

16
24

36

38
55
71
81

83

83
94
96
108
114
120
127

131

131
144
153
163

vi Contents

5. Conditional Control Structures

5.1 Compound Statements

5.2 Boolean Expressions

5.3 If Statements

Case Study: Sales Commissions

Case Study: Temperature Conversions
5.4 Nested If Statements

5.5 Case Statements

5.6 Programming Problems

6. Control Structures for Program Loops

6.1 The While Statement

Case Study: Vote Tabulation
6.2 The Repeat Statement
Case Study: Payroll Calculations
6.3 For Statements

Case Study: Population Growth
6.4 Programming Problems

7. Subprograms: Functions and Procedures

7.1 Procedures

7.2 Functions

7.3 Block Structure in Programs
Case Study: Discount Sales

7.4 Recursion

7.5 Programming Problems

8. Introduction to User-Defined Data Types

8.1 Simple Data Types

8.2 One-Dimensional Arrays

8.3 Sorting and Searching an Array

8.4 String Data Types

8.5 Multidimensional Arrays

Case Study: Tabulation of Election Results
8.6 Programming Problems

9. Sets and Records

9.1 Sets
9.2 Records

9.3 Data Structures Formed by Using Records

Case Study: Analysis of Survey Data
9.4 Programming Problems

10. Files

10.1 Basic File Concepts
Case Study: Filing Test Scores

e Y

164

165
167
181
183
188
196
203
210

215

216
223
230
233
246
249
263

268

268
287
302
311
325
332

340

341
356
372
384
395
413
429

434

434
446
465
479
494

500

501
511

Contents

10.2 Text Files

10.3 Files with Structured Components
Case Study: Inventory File Management
10.4 Programming Problems

11. Dynamic Variables and Data Structures

11.1 Pointer Variables and How to Use Them
11.2 Linked Lists that Represent Queues
Case Study: A Quiz on State Capitals

11.3 Ordered Lists

11.4 Programming Problems

Appendix A
Some Common Character Sets

Appendix B
Pascal Keywords, Identifiers, and Directives

Appendix C
Standard Functions and Procedures

Appendix D
Flowchart Symbols

Appendix E
Answers to Selected Exercises

Appendix F
Programming Projects

Appendix G
Advanced Pascal Features and Extensions

Appendix H
Notes on Three Pascal Implementations

Index

vii

520
534
537
554

557

557
575
582
589
600

A-11

A-26

A-37

A-47

1-1

An Introduction to
Computer Systems and
Programming

Modern computers are high-speed electronic devices capable of collecting, stor-
ing, analyzing, and processing enormous amounts of factual information (or
data) quickly and accurately. We humans can accomplish very little data pro-
cessing per second compared to today’s computers, which are capable of per-
forming thousands of operations per second. Although we cannot match the in-
formation gathering and processing speeds of computers, we can direct
computer operations toward data processing goals by means of computer pro-
grams that give step-by-step instructions to the computer. Those who develop
computer programs are called computer programmers. Unfortunately, we can-
not yet talk to computers as we talk to one another. The list of directions we
want a computer to follow must be coded in a form transmittable to the com-
puter. The coded program must meet the rigid requirements of a programming
language that the computer recognizes, like the language Pascal described in this
book.

Computer programming can be interesting and enjoyable work. Learning to
do computer programming can also be an interesting and enjoyable experience,
but there are some obstacles that a prospective programmer must overcome.
First, there is the problem of communicating with a computer. A programmer
must learn how to give fundamental instructions to a computer so that the ma-
chine will pay attention. A person need not know everything there is to know
about the inner workings of a computer to be able to program it, but some basic
familiarity with the computer must be achieved in the early stages of learning to
construct and implement programs. Another problem a beginning programmer
faces is learning the particulars of the programming language that will be used
to code programs. Many hours of practice using a language like Pascal are nec-
essary to become proficient at program coding. For those who know how to
write Pascal-coded instructions, the actual writing of the program is easy. The
most difficult and most interesting part of programming is planning a program.

2 An Introduction to Computer Systems and Programming

Naturally, the planning should come first; if the planning is thorough and accu-
rate, the program should be too.

From Chapter 2 on in this book, programming methodology and the particu-
lars of the Pascal language are examined. The purpose of this first chapter is to
present an overview of computer systems and of the programming process.
Most of the computer terminology used throughout the book is defined in the
next few pages. As you read this chapter, try to develop a general perspective on
computers and programming,.

1.1 Computer Systems

The electronic and mechanical devices that constitute the tangible components
of a computer are referred to as hardware; computer programs are said to be
software. It is an appropriate blend of hardware devices and software that gives
a computer life as a data processor. First, we will examine the major hardware
components of a computer.

Functional Units of a Computer

Figure 1-1 shows the general organization of the four main functional units of a
computer: a central processing unit (CPU), a memory, an input unit, and an
output unit. The arrows in the diagram show the directions in which data may
flow from one unit to another.

Central Processing Unit (CPU)

Control Arithmetic
Unit and Logic
Unit
Input) Output
Unit Primary Memory il

Secondary Memory

FIGURE 1—1 The functional units of a typical computer.

1.1 Computer Systems 3

The central processing unit consists of circuitry that monitors and controls all
the other hardware devices that are part of the computer. Actually, the CPU is
composed of two units: the control unit and the arithmetic and logic unit. The
control unit can access instructions from programs stored in memory, interpret
those instructions, and then activate appropriate units of the computer to exe-
cute them. Other activities of the control unit include generating control and
timing signals for the input and output units, entering and accessing data stored
in memory, and routing data between memory and the arithmetic and logic unit.

The arithmetic and logic unit is a servant of the control unit. It can perform
such simple arithmetic operations as addition and subtraction and it can per-
form certain logical operations such as comparing two numbers. The control
unit provides the arithmetic and logic unit with appropriate data and then acti-
vates that unit to perform the desired operation.

As depicted in Figure 1-1, a computer has two types of memory: primary
memory and secondary memory. Primary memory is sometimes called internal
memory because it usually occupies the same physical enclosure as the central
processing unit. A computer’s primary memory consists of individually accessi-
ble storage cells, which we will call memory locations. Each memory location
can store exactly one data value, such as a number. A small computer may have
only a few thousand of these memory locations; large computers often have
more than a million storage cells in their primary memory. Every memory loca-
tion has a unique identification number, which serves as its memory address. We
can think of an individual memory location as a box with a numbered lid whose
contents are always visible through one end, as depicted in Figure 1-2. The cen-
tral processing unit can access any memory location by using its memory ad-
dress. Once the CPU has found a particular memory location, it can simply ob-
serve the contents of that storage cell or it can store some value there. In the
latter case, the new value replaces any value that is already in the memory loca-
tion. The “old value” is destroyed because a memory location has the capacity
to store only one value at a time.

Memory
Address

Contents of Memory

FIGURE 1—2 A memory location simulated as a box with a window at one
end through which its contents are visible.

4 An Introduction to Computer Systems and Programming

The CPU accesses storage locations in primary memory very rapidly com-
pared to those in secondary memory. Primary memory is normally used to store
only information currently being processed by the CPU because the number of
memory locations in primary memory is always limited. Secondary memory
(also known as mass storage) provides more permanent data storage. Magnetic
tapes and disks are common forms of secondary memory. Magnetic tape is a
plastic ribbon coated with magnetic material on which information can be
recorded in much the same way that a voice or music is recorded on sound
tapes. A magnetic disk is a thin circular disk made of metal or plastic; it, too, is
coated with magnetic material that serves as a recording medium. The amount
of secondary memory is essentially unlimited, since tapes and disks can be re-
moved from recording devices when they are filled with information and can be
replaced by new tapes or disks.

Input and output units link a computer with the outside world. Data and
programs enter a computer’s primary memory via some input device and pro-
cessed information is displayed on some output device. There are many types of
input devices, and each one can “read” information represented in some physi-
cal form. Programs and data prepared on punched cards or paper tape, mark-
sense cards, magnetic tape, or magnetic disks can be fed into an appropriate in-
put device. Some input devices have typewriter-like keyboards that can be used
to enter information. An output device is used to copy information from the
computer’s memory onto some recording medium. There are output devices that
print on paper, punch cards, or paper tape; record on magnetic tape or disks; or
display information on a television screen. Although every computer normally
uses at least one input device and one output device, it is not uncommon for the
input and output units to have available several devices for input and output.

Programming Languages

The actual writing of a computer program is called coding. A program is simply
a sequence of instructions for a computer that has been coded in a specific pro-
gramming language. There are many programming languages, each one a formal
system of symbols, including rules for forming expressions, that can be used by
a human being to communicate with a computer. Meaningful expressions are
formed according to rigid syntax rules (or grammar) utilizing a well-defined vo-
cabulary. Every program instruction must conform precisely to the syntax rules
for the language in which the program is written. The rules are very rigid be-
cause a computer cannot “think” like a human being; it merely follows precise
directions given in a program, and so those directions must be unambiguous. As
with any language, the grammar for a programming language tells how to form
“sentences” that are properly structured. There are rules of semantics, which tell
when a syntactically correct instruction is also meaningful. Consider the follow-
ing two English sentences: L

1.1 Computer Systems 5

Put the meat into the refrigerator.
Put the refrigerator into the meat.

Both sentences are syntactically correct according to the grammar of the English
language, but the second sentence is semantically incorrect.

The central processing unit can execute only instructions that are coded in
machine language. In machine language, instructions and data are stored in the
computer’s memory as numbers composed solely of 1s and 0s. This is known as
binary coding and the digits 0 and 1 are referred to as bits (short for binary
digits). The number of bits that can be stored in a memory location is fixed for
each computer. Suppose that our computer has memory locations that store 16-
bit numbers. If we could look at the memory location whose address is 327, we
might see

327 1 0001010000001100

The contents of memory location 327 could represent a machine language in-
struction. If so, the control unit of the CPU decodes the instruction by examin-
ing groups of consecutive bits. For instance, the first six bits could be an opera-
tion code, and the remaining ten bits could specify the source of data needed for
the designated operation, as illustrated below.

(oo00101) (0000001100)

Operation Data Source
Code

A machine language program consists of a sequence of binary coded instructions
that the control unit is able to decode and execute.

As an alternative to machine language coding, programs can be written by
using abbreviations instead of binary codes to represent machine-level instruc-
tions. A language of this type is known as an assembly language. An assembly
language program is written at the same level of detail as a machine language
program, but the instructions are written in a form that makes them easier for
humans to read. Consider the following sequence of hypothetical assembly lan-
guage instructions. :

SUM CON ©

PROG LDAC 12
ADD 51
STAC SUM
HALT PROG
END

h .

An Introduction to Computer Systems and Programming

In assembly language instructions, special word symbols (called mnemonics) like
ADD, STAC, and HALT in the above example replace binary operation codes.
This makes an assembly language program easier for people to read than a ma-
chine language program once they learn the assembly language. As we know, a
computer can execute only a program written in machine langnage. An assem-
bly language program must be translated into machine language before it can be
executed. This task is perfomed by another program, called an assembler, that
resides in the computer’s memory. The assembler treats an assembly language
program as data and produces an equivalent version of that program in machine
language. When we say that an assembly language program is executed, we
mean that the assembled machine language version of that program is executed.

Although an assembly language program looks different from a machine lan-
guage program, programming in assembly language is still dominated by ma-
chine-oriented concepts. One of the major drawbacks to programming in ma-
chine language or assembly language is that there is no one machine language
for all computers. In fact, machine languages (and hence assembly languages)
vary considerably from computer to computer.

A computer’s machine language is, unfortunately, far removed from lan-
guages that people use to communicate with other people. For this reason, mod-
ern computers are equipped with “built-in” programs called systems programs
that enable them to communicate with people in a more nearly human fashion.
An assembler is a systems program that allows a programmer to create a ma-
chine-level program using symbols that are more descriptive of machine opera-
tions than binary code. The assembler’s job is to translate a grammatically cor-
rect assembly language program into machine language. A systems program that
takes a program written in one language and produces a version of that pro-
gram in a different language is known as a language processor. There are three
types of language processors: assemblers, compilers, and interpreters. Programs
written in an assembly language specify operations at the machine level, and so
they must be coded with the hardware capabilities of the computer in mind.
Other symbolic languages have been developed to take care of specific hardware
requirements automatically so that the programmer can concentrate more on
procedures and problem solving and less on the work of the computer. These
so-called high-level languages allow program instructions to appear in an En-
glish-like form or with mathematical formulas. Compilers and interpreters are
language processors used to produce translations of programs written in high-
level languages.

Machine and assembly languages are tied to particular computers, but high-
level languages are not. Compilers or interpreters for a popular high-level lan-
guage are implemented as systems programs on a wide variety of computers.
Furthermore, a high-level language is easier to learn and makes programs more
human-readable than they would be in either machine or assembly language.
Consider the following example of a simple, yet complete, Pascal program.

The purpose of the above program is made clear by its name, Add35ando4.
Certain words like program, var, begin, and end in our example have specific

