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EDITOR’S PREFACE

AFTER the death of Sir Arthur Eddington in November 1944, Miss Eddington and
the Syndics of the Cambridge University Press invited me to supervise the publication
of the manuscript of the present volume. I have followed the text without alteration
except in correcting obvious slips of the pen, making slight changes to remove
obscurities, and supplying references which Eddington had left blank. I have added
a few additional notes and have constructed an Index.

By way of general introduction, I may say that the work is complete in itself, and
practically replaces all the author’s previous writings on his theory of the constants
of Nature. Chapters 1—v follow closely the treatment adopted in his Dublin lectures
of 1943, and Chapters vi-viir are devoted to the sedenion analysis which had been
expounded in his Relativity Theory of Protons and Electrons of 1936; but the rest of
the book is chiefly new matter, and contains developments of outstanding power and
interest. Those who desire a preliminary glance at the results may be advised to
turn to:

(i) The table on page 66, which gives the values of the microscopic constants as
calculated by Eddington’s theory, compared with the observed values.

(ii) The similar table of molar and nuclear constants on page 105.

(iii) The first list of achievements of the theory in nuclear physics given on page 211:
the numerical comparisons will be found in the separate sections of Chapter Ix,
Eddington’s intention having been to collect them, together with the discoveries of
Chapters x—x11, in a table in the part of the book which he did not live to complete.

(iv) The results for the magnetic moments of the hydrogen atom and the neutron
on pages 249 and 251.

For a somewhat fuller introductory account of the theory, reference may be made
to an article in the Mathematical Gazette, 29 (October 1945), pp. 137—44.

Professor E. T. Copson, of University College, Dundee, in the University of
St Andrews, and Professor George Temple, F.R.S., Head of the mathematics
department in King’s College, London, have most kindly read the proof-sheets with
me. I wish also to acknowledge gratefully the help given by the Staff of the
Cambridge University Press.

EDMUND T. WHITTAKER
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Chapter I
THE UNCERTAINTY OF THE REFERENCE FRAME

1. The uncertainty of the origin

The quantities occurring in the equations of mathematical physics relate partly to
physical objects and events and partly to a mathematical framework introduced for
purposes of reference. Both relativity theory and quantum theory stress the distinction
between observables, i.e. quantities which could be ascertained by a specified obser-
vational procedure, and unobservables, i.e. quantities depending partly on the auxiliary
mathematical frame which cannot be the subject of actual observation. Unobservables
are used to systematise description and facilitate calculation, but they are eliminated
in the final steps of the calculation of observationally verifiable results.

In classifying quantities as observable or unobservable I shall follow current usage
rather than the most literal meaning of the terms. Rightly or wrongly, modern physics
is not over-scrupulous in postulating measurements of a highly impracticable kind.
But although measurements are often very much idealised, it is recognised that
idealisation must stop short of actual self-contradiction. Relativity theory and
quantum theory have each laid down conditions of observability which are certainly
necessary if self-contradiction is to be avoided; and the term ‘observable’ will here
be understood to mean that the quantity satisfies both tests.?

Relativity theory begins with a denial of absolute motion. An observed velocity
d&/dt of a physical entity is necessarily relative to another physical entity. Likewise
an observed coordinate £ is a relative coordinate of two physical entities.

Quantum theory insists that the connection of a physical entity with the geometrical
frame of coordinates is governed by Heisenberg’s uncertainty principle. A particle is
not exactly locatable at a point in the geometrical frame, or in four dimensions as a
world-line. It can only be assigned a probability distribution of position and velocity.

In modern physics these two principles of observability have been applied separately
with very far-reaching results; but they have seldom been applied in combination even
by those who profess to be developing a relativistic quantum theory. The combined
principle is thiat a coordinate § is observable only if it is a relative coordinate of two entities
both of which have uncertainty of position and momentum in the geometrical frame.

The same considerations apply to momenta and other observables. An observable
is always a statistic of a double probability distribution.

The essential point is that an observable coordinate is measured, not from an
abstract mathematical point as origin, but from something which is involved physically
in the operation which furnishes the measure. Being involved physically it experiences
those incalculable reactions which limit the precision of our knowledge in the way
laid down by Heisenberg’s principle. We must therefore distinguish between the
‘physical origin’ from which an observable coordinate is measured, and the ‘geo-
metrical origin’ of the auxiliary mathematical frame. The latter, as already stated, is

® Observables and measurables will be fully treated in Chapter xim, and a logically satisfactory
definition will then be given.

EFT I



2 Fundamental Theory

eliminated in the final calculation of observationally verifiable results; being therefore
aloof from the rough-and-tumble of observational inquisition, it has a sharpness of
definition which contrasts with the blurring of all physical landmarks by probability
scatter.

Consider a system of particles with coordinates z,, ¥,, 2, (r = 1,2,3,...) in the
geometrical frame. These coordinates are unobservables. To obtain physical, i.e. observ-
able, coordinates we must substitute for the geometrical origin an actual particle or
its equivalent, e.g. the centroid of a set of particles. Let the geometrical coordinates
of the physical origin be x,, ¥,, 2,; these also are unobservable. But the relative
coordinates

gr’ Nes §r=xr—x0: Yr— Y0 2, — 2% (1'1)
are observables. .

Nominally the exact value of £, could be found by observation, at the expense of
infinite uncertainty of the conjugate momentum. Such a measurement would be
scientifically useless, since the coordinate would instantly become uncertain again;
it is the measurement of a careless experimenter who destroys his specimen by handling
it too roughly. Thus our knowledge of &,, 7,, {, at any time is described by a probability
distribution. A measurement of £, will give a value taken at random from the pre-
existing® probability distribution of £,; or equivalently it will give the distance from a
random point in the probability distribution of z, to a random point in the probability
distribution of =,.

The transformation of coordinates from z,, y,, 2, to &,, 9,, {, is a change from an
origin fixed in the geometrical frame to an origin with a probability scatter in that
frame. It will be necessary later to make a special study of this type of transformation
which, of course, is beyond the scope of the ordinary theory of coordinate transforma-
tions. In particular, we shall obtain formulae for transforming a probability distribu-
tion of physical coordinates into a probability distribution of geometrical coordinates
or vice versa, and very much simpler formulae for transforming the probability
distribution of the conjugate momenta (§§ 37, 38). But to carry out these transforma-
tions it is necessary to know the distribution function f(, ¥, 2,) of the coordinates
of the physical origin. This function cannot be found observationally, because z, ¥,, Z
are unobservable.

The coordinates postulated in the dynamical equations of wave mechanics must be
measured from a physical origin, since they and their conjugate momenta are assumed
to be observables, being in fact the typical observables of quantum theory. It will be
recalled that the wave-packets, whose propagation and diffusion are studied in wave
mechanics, are created by our observational measurements—or more strictly by our
becoming aware of the results of measurements and assessing the probability accord-
ingly—so that it is essential to distinguish the variates in which these concentrations
of probability can occur.

Thus in some, if not all, of the fundamental equations of quantum theory the
coordinates are measured from a physical origin. The urgent question arises: What is
this origin, and what distribution function f(2, ¥,, 2,) has been assumed for it? Writers

® After the measurement the information which it furnishes is used to reassess the probability. The
probability distribution therefore changes dlscontmuously at the moment when the observer becomes

aware of the result of the measurement. Attention will be paid to this point in § 35, where a very im-
portant distinction between ‘structural theory’ and ‘predictive theory’ is introduced.



The Uncertainty of the Reference Frame 3

on quantum theory give no hint as to the physical origin they are employing. But their
equations can only be valid for some particular origin, since they are not of a form
which would be invariant for arbitrary changes of f.

2. The physical origin

The centroid of a large number of particles has the important statistical property
that (subject to certain conditions which are ordinarily fulfilled) the form of its prob-
ability distribution does not depend on the law of probability distribution of the
individual particles. The mean of a largé number of uncorrelated variates z, has a
Gaussian distribution whatever, within reason, may be the distribution law of the
individual z,. .

Thus if we employ the centroid of a large number of particles as our physical origin,
we have the immense advantage of starting with an a priori knowledge of the dis-
tribution of its geometrical coordinates x,, ¥, 29, complete except for the one disposable
constant in the Gaussian law. The distribution function of z, is then

fla) = (2mo?)teein,

If we impose the condition that the distribution of the particles has spherical
symmetry, the formula is extended to three dimensions and becomes

S (@0, Yo, %) = (20 %)~ @t HUe 27202, (2:1)

The standard deviation o, which is left to be determined later, will be called the
uncertainty constant of the physical reference frame.

Although the centroid is not directly indicated by a physical landmark, it is admissible
as a physical origin. Formally the observational procedure would be to measure the
coordinate £, of the rth particle from each of the other particles in turn, and take the
mean £, = £,.; the mean can be treated as equivalent to a single measurement from a
mean particle at z,. '

Throughout this book we shall employ a physical origin related to the geometrical
origin by the Gaussian distribution function (2-1), which is defined observationally
as the centroid of a system of » particles with a spherically symmetrical but otherwise
unrestricted probability distribution. The number #» is always understood to be very
large. Sometimes this assemblage will be the principal subject of investigation; but,
if not, it is in the background, forming the standard environment-(§7) of the small
object-system that is being particularly studied.

The laws and constants that we derive are valid only on the understanding that the
measurements concerned in them are referred to the physical frame defined by (2-1).
Since writers on quantum theory leave us to guess what frame they are using, there is
no guarantee that our frame will turn out to be the one in which the current quantum
equations are valid. We are under no obligation to prove this identity in advance; but
as a matter of practical expediency it is very desirable that the frames should agree.
By making an early junction with current quantum theory we are saved an over-
whelming amount of labour, because we can then take over unchanged all the specialised
investigations needed to complete the application of our results to practical experi-
ments; and it is therefore good policy to avoid unnecessary differences of form and
definitions. The carrying out of this policy involves a good deal of ‘intelligent

1-2



4 Fundamental Theory

anticipation’, and steps which determine the form of the theory often have to be
justified from this point of view. The reader interested in logical rigour should bear in
mind that the development of the theory turns partly on strict deduction and partly
on ultimate saving of labour. The former part requires proof, the latter part success.

Fortunately, we can foresee that current quantum theory must be based on a physical
origin which is the centroid of a large number of particles. For if it were otherwise, the
equations could be, of no practical use. Since z,, ¥,, 2, are unobservable, there is no
way of determining f(z,, %o, 2,) by observation. It is only when we have theoretical
information, such as that furnished by ‘the law of large numbers’, that we can associate
a definite form of f with an observationally defined point. Thus, if quantum theory
postulates a non-Gaussian form of f, it is impossible to recognise observationally the
measured coordinates to which it applies, and there is no means of connecting its
predictions with actual experiment. This is a reductio ad absurdum, because there is
no doubt as to the general agreement of current quantum theory with experiment.

The foregoing may be described as the problem of ‘anchoring’ an ideal mathematical
frame in the world of observational measurement. Anchoring is made possible by the
statistical cancelling of fluctuations in large assemblages; and the small residual
fluctuation that remains is necessarily Gaussian.

Starting with an abstract geometrical coordinate frame, we step over from pure
geometry into physics by introducing a physical coordinate frame whose origin has the
probability distribution (2-1) relative to the geometrical origin. We shall find that the
standard deviation o of this distribution puts the scale into the physical frame and
everything constructed in the physical frame, whether it be a nucleus, an atom, a
crystal or the whole extent of physical space. The main problem in this book is to
investigate the way in which the extensions of these various structures are related to
o, and to evaluate the numerical ratios for some of the simpler structures.

In stepping over from the geometrical to the physical frame we appear to have
freedom of choice of o. But the freedom is illusory, because o can only be measured in
terms of the extensions of physical structures whose scale it has itself determined. To
double o would double all linear constants such as the wave-lengths of the hydrogen
spectrum; thus the measure of o in terms of the wave-length of the H, line as unit
would remain unaltered.

3. The Bernoulli fluctuation

Consider a very large number of particles N which all have the same probability
distribution of coordinates. Let ¥ be a volume, fixed in the geometrical frame, extensive
enough to include a large number of them. Each particle has the same probability p
of being within ¥, and the mean or expectation number in ¥ is n, = pN. Let the actual
number in ¥}, be %, and set

n="ny+y.

Then, by James Bernoulli’s theorem, the fluctuation y has the distribution law
In(y) = {2mny(1 —n,/ N)}'* e—V22ny1—ny/N) (3-11)

If N/ny— oo, this becomes
fo(y) = (27ng)~H V2, (3-12)
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Both distributions are Gaussian, and their standard deviations are (n,—n/N)¥
and n}. Hence (3:12) can be obtained by compounding with (3-11) an independent
Gaussian fluctuation with standard deviation (ng/N) and distribution law

foly) = (2mnf[N)— e~ NV, (3-13)

Let { = y/n,, so that n = ny(1+). ; (3-2)
Then the distribution law of { corresponding to f,(y) is

ge(£) = (2m/N)~H eIV, (3-3)

We thus resolve the Bernoulli fluctuation into two independent Gaussian fluctua-
tions, namely, an ‘ordinary fluctuation’ (3-12) arising from the finiteness of 7, and an
‘extraordinary fluctuation’ (3-3) arising from the finiteness of N. The extraordinary
fluctuation is to be combined negatively, so as to give a tetal fluctuation less than the
ordinary fluctuation.

We shall apply this analysis to a system of particles which is in self-equilibrium, so
that the probability distribution is steady. According to relativity theory the only
distribution of matter which can be in self-equilibrium is a uniform distribution filling
a hyperspherical space. This is the well-known  Einstein universe’. The hyperspherical
(or, as it is commonly called, spherical) space has finite volume; so that N/n, is finite.
The infinite Euclidean space of classical theory corresponds to the limit when N /n,— oo
and the extraordinary fluctuation vanishes. Thus, in passing from classical to relativity
theory by taking N finite, two changes are made: the space becomes curved, and an
extraordinary fluctuation is introduced. These, however, are not two changes but one.
We are going to show that the space curvature is simply a way of taking into account the
extraordinary fluctuation. _ »

Henceforth we shall deal with the extraordinary fluctuation alone. (The ordinary
fluctuation, being common to relativity theory and classical theory, requires no special
attention.) Denoting the particle density n/V; by s, the fluctuation changes an exact
particle density s, into a slightly uncertain density

8 = 8o(1+9). (3-41)

Instead of considering an uncertain number of particles » in a fixed volume ¥}, we can
consider an exact number of particles n, and transfer the uncertainty to the containing
volume V, where n/V; = n,/V. Setting

V =7,/(1+€)3, (3-42)

the uncertainty is now contained in a linear scale factor 1 +e¢.

The distribution function g,({) can be transformed into a distribution function of .
If we had to transform a distribution over discrete values of ¢ into a distribution over
corresponding values of ¢, the relation would be (1 +¢) = (1 +¢)3. But, in transforming
a continuous distribution function, discrete values are replaced by constant ranges,
and we have to insert a factor proportional to de/d{ to transform constant ranges of €
into the non-constant ranges of ¢ which correspond to constant ranges of ¢. The relation

is therefore (1+&)d¢ = constant x (1 +¢)3de,

which gives on integration (14872 = (1+e) (3-43)
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For the distribution function g,({) the values of ¢ which have sensible probability are
of order N-t, and are therefore extremely small—actually about 10-3°. Hence (3-43)
becomes with ample approximation { = 2¢. By (3-3), the standard deviation of { is
N-%; hence the standard deviation of € is

o, = 1/2,N. (3-5)

The extraordinary fluctuation of the particle density can therefore be represented by
a scale fluctuation with the standard deviation (3:5).

The geometrical frame is our standard of fixity when we speak of the uncertainties
of physical quantities; and the ideal exact scale € = 0 is the scale on which the geo-
metrical coordinates are measured. In order to take account of the extraordinary
fluctuation as a scale uncertainty, we must introduce the uncertain scale 1+¢ in the
system of the physical coordinates &, 7, {. Considering a point distant r from the
origin, the difference z,, y,, 2o = £ —, ) —y, { — 2 between its physical and geometrical
coordinates will now consist of

(@) a fluctuation with standard deviation o in all directions, due to the uncertainty
of the position of the physical origin, and

(b) a fluctuation with standard deviation o, r in the radial direction only, due to the
uncertainty of the scale of measurement of r.

Remembering that the extraordinary fluctuation represented by (b) is to be com-
bined negatively with other sources of fluctuation, the resultant standard deviation is

radial (o2 —o2r2)}, transverse o. (3-6)

We shall call (3-6) the local uncertainty of the physical reference frame. It has been
derived as a combination of the uncertainty of a distant origin with the uncertainty
of scale; but it can be described more compactly as the uneertainty of a local physical
origin relative to a local geometrical origin. We could, by making a local coordinate
transformation, introduce ‘natural coordinates’ such that the local uncertainty in all
directions is restored to the original value o; these coordinates are applicable so long
as the distance r from the local origin is small enough for o, to be neglected. Indepen-
dently of coordinate systems, the local uncertainty in a given direction defines an extension
which might be adopted as the unit for measuring lengths in that direction in that locality.
We shall call this the o-system of defining lengths, or briefly ‘the o-metric’.

Let ds be the length, reckoned in o-metric, of a line-element dr, rdf, rsin6d¢. By
(3-6) the lengths of radial and transverse elements are proportional to dr/(o? —o?72)t,
rdf/o, rsin 6d@/o; so that the general formula is

ar 5 +7r2d0? +r2sin? Odg2. (3:7)

2
2 _
g = 1—(0?/o?)r

This is the well-known formula for the line-element in spherical space of radius
R, = o/o,. Hence by (3-5)
o = Ry/2N. (3-8)

It will appear in the next section that the o-metric is the recognised metric in physical
theory; so that we have in this way reached the usual description of space (occupied
by a steady distribution of particles) as spherical, and have found the equation (3-8)
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which determines the uncertainty constant o in terms of the cosmological constants
R, N. v

The scale uncertainty is naturally interpreted as the result of measuring with a
standard whose actual extension (in the geometrical coordinate frame) is uncertain
to this extent. A standard whose uncertainty is no more than 1 part in 103 is very much
idealised; but there is no self-contradiction in assigning to a physical system character-
istics supposed to have been measured by such a standard. If, on the other hand, the
standard is supposed to be exact, it is contradictory to suppose that anything has been
measured with it.

If a measured distance r has been determined with a standard which has a fluctuation
o, the standard deviation of r cannot be less than o,r. We have applied the standard
deviation o, r negatively; this means that we have corrected the whole observed fluctua-
tion of r for the part attributable to uncertainty of the standard. We first represent the
observational measures, without any correction, in flat physical space. Recognising
that the probability scatter is partly due to fluctuation of the standard employed (it
being impossible to make measures at all unless the standard is inexact), we desire to
eliminate this part so as to obtain what we should regard as the true distribution
corresponding to an exact standard. This elimination changes the o-metric so that the
flat space is transformed into the spherical space (3-7). Thus the cosmical curvature
replaces the fluctuation of the standard; and when we use the relativity representation
of the universe in spherical space the scale is to be treated as exact.

This elimination of o is statistical, so that the curvature representation is suitable
for molar physics, which is concerned with statistical averages of large numbers of
particles. But a merely statistical elimination is not good enough for microscopic
physics. Consequentlyin quantum theory we shall notuse the curvature representation.
We shall revert to flat space, and take account of scale fluctuation in another way (§ 24).

4, The standard of length?

In order to make it clear that the o-metric is the recognised metriec in relativity
theory, quantum theory and practical metrology, we consider the conditions that must
be fulfilled by an ultimate standard of length. The Paris metre is not accepted as an
ultimate standard; the mere fact that anxiety is felt as to its constancy shows that
physicists have in mind a more trustworthy standard by which it might be judged.
The ultimate standard must be available at all times and places. We require a physical
structure, not necessarily permanent or transportable, but constructable at any time
and place from a recorded specification.

The form of the specification is decided by the condition that the definition of length
(and a corresponding definition of time interval) is required at the very beginning of
physics; because the definitions of other physical quantities assume that a system of
space and time measurement is already in existence. It would therefore be a vicious
circle to use any ‘dimensional’ physical quantities in specifying the standard referred
to in the definition of length. The quantitative part of the specification must consist
entirely of pure numbers. The specification of physical structure by pure numbers—
numbers of elementary particlesin configurationsor states defined by quantum numbers

& This subject is treated at greater length in The Philosophy of Physical Science, pp. 70-85.
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—is developed in quantum theory. Accordingly, the standard of lengthmust be a quantum-
specified structure.

The equations of quantum theory determine the various spatial extensions in
quantum-specified systems as fixed multiples of a unit #/m,c. Whether or not this unit
is supposed to be constant at all times and places, the ratio of two quantum-specified
extensions at the same time and place is a fixed constant. Thus all quantum-specified
structures give equivalent metrics, differing from one another only by a constant
conversion factor.

It remains to show that the unique quantum-specified metric is the same as the
o-metric. This follows at once if we can show that any one quantum-specified extension
has a mathematically calculable, and therefore fixed, ratio to the local uncertainty o
Since the main purpose of this book is to investigate in detail the way in which the
extensions of various simple structures are related to o, ample proof will be furnished
in due course. For example, we shall find that the Rydberg constant for hydrogen R,
which is the reciprocal of a length, is given by

16m4/5
-1
R 3

.1362.137. 0. (41)

Thus the use of the wave-length of the H, line as a standard of length available at all
times and places is equivalent to using the o-metric.

For molar measurement the standard is commonly embodied in a rod, which is
understood to be calibrated by means of the H, (or some other quantum-specified)
wave-length. Or we may use the extension of a fixed number of lattice spaces in a
specified kind of crystal at a temperature specified in some absolute way. The standard
- of time is likewise defined by periods of light waves or of the vibrations of a crystal.
Evidently, in replacing the Paris metre by a wave-length or crystal-lattice standard,
and the earth’s erratic time-keeping by a quartz clock, the practical metrologist
accepts the quantum-specified standard as his ideal, so that there is no difference in
the accepted meaning of length and time-interval in theoretical and experimental
physics.

The ratio of the wave-length to the period of H, light is the velocity of H, light.
Thus it follows from the definition of the ultimate standards of length and time that
the velocity of light is constant everywhere and everywhen. ‘Alleged experimental
evidence for a rather large change of the velocity of light in the last 70 years has been
put forward. From the nature of the case there can be no such evidence; if anything is
put in doubt by the experimental results, it is the agreement of the standards used by
the various observers. More baleful, because it has received more credence, is the
speculation of various writers that the velocity of light has changed slowly in the long
periods of cosmological time, which has seriously distracted the sane development of
cosmological theory. The speculation is nonsensical because a change of the velocity
of light is self-contradictory.

Itis perhaps not superfluous to add that no question arises as to whether the standard
here defined really has the same length at all times and places. The question implies
that there is a more ultimate standard, invested with ‘reality’—whatever that may
mean—which would show up the variations, if any, of the quantum-specified standard.
The concept of length must be kept free from this kind of metaphysical embroidery.
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Length, like other physical quantities, is a term introduced for the purpose of succin(?t
description of observational knowledge; and, if it is defined appropriately for this
purpose, no other criticism is relevant.

5. Range of nuclear forces and the recession of the galaxies

The simplest manifestation of the uncertainty of the local physical origin occurs
when we consider two particles very close together, as in a nucleus or in the close
encounters of two protons in scattering experiments. If £,, £, are physical coordinates
of the two particles, their relative position is usually described by the coordinate-
difference £,, = £,— £,. But it is also possible to measure the relative coordinate directly
from one particle to the other without the intermediary of an origin. The directly
measured relative coordinate will be called £/,. Both £,, and £, are observables, and
they have the same mean value; but their probability distributions are different, that
of £,, having the greater spread. Thus the wave functions associated with them, and
the conjugate momenta, are different.

An observation of , gives the distance from an undetermined point in the probability
distribution of the origin to an undetermined point in the probability distribution of
the particle. If £, is also measured, the measure has an independent starting point
in the probability distribution of the origin. Thus £,— £, will include the coordinate-
difference of two random points in the distribution of the origin; this is a quantity
having a Gaussian probability distribution with standard deviation o /2. By making
the measurements directly from one particle to the other we eliminate this source
of scatter; hence, in the notation of the theory of errors,

grs = g;si'o-\/z (5'1)

This illustrates a principle of wide importance. The description of physical systems
by probability distributions requires precautions which are liable to be overlooked
because they have no counterpart in the classical conception of physics from which
most of our nomenclature is derived. Definitions have to be refined to take account of
distinctions unprovided for in classical terminology. This applies even to the distance
between two particles, where it is necessary to state explicitly which of two quantities

rz = Eh+7+Eh) and rp = (E3+7E+ 8¢

is meant. The difference is insignificant unless we are dealing with distances of the
order of nuclear dimensions; but in the nucleus it is essential to distinguish r,, and 7,.
Thus, when a writer uses the term ‘range of nuclear forces’, we have to ask whether
he means range in r,, or range in 7},.

Normally the relative coordinates employed in quantum theory are £,, 715, {ig-
In particular, the Coulomb energy is €?/r;,. The non-Coulombian energy, however,
is a singular energy associated with r{, = 0, i.e. with actual coincidence of the particles.
The whole electrical energy can therefore be expressed as e?/r;,+ Bd(r},), where &
is Dirac’s d-function (§49). By (5-1) the values £}, 75, {ia =0 correspond to
£12> T1as §12 = +0°4/2; so that the point 7], = 0 has a Gaussian probability distribution
with standard deviation ¢ ,/2 over £,,, 7,5, {15, and Bé(r},) is transformed into Ae—Ti*,
where k (which is /2 times the standard deviation) is equal to 2¢-. This is the form in
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which the non-Coulombian energy appears in the usual equations. We call £ the
range constant of nuclear forces. By (3-8),

k = 20 = Ry/|N. (5-2)

The range is simply the effect of the uncertainty of the reference frame, which scatters
the singularity 3, = 0 into a Gaussian distribution of r,,.

Since the range constant has been determined experimentally, chiefly from the
scattering of protons by protons, and the cosmological constants R,, N have been
determined by astronomical observation of the recession of the extra-galactic nebulae,
we are able, even at this early stage, to apply an observational test to the theory. The
well-known formula, first derived by Einstein in 1916, for the mass M of an Einstein

universe 18 KM/62 _ %TTRU, (53)

where k is the constant of gravitation and ¢ the velocity of light. The number of particles
(protons and electrons) being N, we have M = ;Nu, where »is the mass of a hydrogen
atom. Hence

R,/N = kn[mc® = 3-95 x 10-53 cm. (5-41)
The experimental determination of the range constant from the scattering of protons
by paesans gives Ry/JN =k = 1-9 x 103 ¢m. ' (5-42)

From (5-41) and (5-42) we can obtain N and R, separately, and hence find the limiting
speed of recession of the galaxies which by Lemaitre’s formula is 7 = ¢/R,4/3. The
result is 7, = 585 km. per sec. per megaparsec. The actual speed should be rather less
than the limiting speed, but the difference is not very important.> The observed value,
found by Hubble and Humason, is 560 km. per sec. per megaparsec.

The observational determinations of  and ¥, do not claim high accuracy; and an
agreement within 10 per cent would have been considered satisfactory. The test is
therefore rather rough. But it is of particular interest because it straddles the whole
range of physical systems from the nucleus to the cosmos.

Since k& = 20, a much more accurate value of & (correct to 8 significant figures if
we wish) can be obtained from (4-1). The result is £ = 1-921 x 10-13. This gives
V, = 5724 km. per sec. per megaparsec.

Reversing the argument, we can deduce from the observational data that the range
in ry, is zero; so that non-Coulombian energy is definitely associated with a singularity
of r3,. Thus we need not hesitate to reject the ‘meson-field’ hypothesis altogether.
It is in any case quite unnecessary in genuinely relativistic quantum theory. It is not
an alternative way of taking into account the uncertainty of the origin, because it
gives an energy distribution 4de—*"1z instead of Ae—T1."k" P

6. Spherical space

The formula for ds in spherical space has alternative forms corresponding to different
definitions of the coordinate r. The form (3-7) is obtained when we project the points

2 From our present knowledge of the average density of matter throughout space, it is estimated that
the present radius of the universe is 5R,. This will make the actual speed 30 km. per sec. per megaparsec
less than the limiting speed V,. (Monthly-Notices, R.A.S. 104, 203.)

b Tt may be expected that the shape of the non-Coulombian potential well will, at a not distant date,
be determined experimentally. This will provide a crucial test between the present theory and meson-
field theory.
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of spherical space orthogonally on the tangent flat space at the origin, and take the polar
coordinates in the tangent space as r, 8, ¢. This leads to a simple graphical representa-
tion of our results.

We start with a geometrical origin P and rectangular coordinates , y, z in flat space.
Let the coordinates of a particle at 7' be ,, ¥,, z,. When the extraordinary fluctuation
is represented by curvature, z,, y,, 2, are unaltered, but a fourth coordinate w, is intro-
duced which displaces 7' to a point S on the hypersphere. Transferring the origin to
the centre O of the hypersphere, the equation of the hypersphere is

x2+y2+22+u? = RE. (6-1)

For a particle with uniform probability distribution over the hypersphere the mean
values are R—p-Z-—uw=1R
Thus the standard deviation of a coordinate of a particle (from its mean value 0)
is }R,; and the standard deviation of a coordinate of the centroid O’ of the N particles
is Ry/2,/N, which is equal to o by (3-8). We denote the

components of 00’ by z,, ¥y, %, %,- Each has a Gaussian ) A
distribution with standard deviation o

Let P’ be the orthogonal projection of O’. Since PP’ is S
of order 1013 em., we can regard P’ indifferently as a point 0
in the tangent space or in the curved space. Its coordinates o'

%y, Yo, 2y have a dispersion o, agreeing with that of the
physical origin. Thus the definition of the physical origin
as the centroid of N particles is extended to particles in
spherical space by simply ignoring the u coordinate. The fourth component %, of
OO’ represents the scale fluctuation of R,. Since the radius of the hypersphere deter-
mines the linear scale of the whole universe, we naturally associate with the distinction
between the geometrical origin P and the physical origin P’ a distinction between the
geometrical scale OP and the physical scale O’ P’. We have

O'P'|OP = (Ry—uy)/R,.

Since the standard deviation of uy/R, is o/R, = ., the scale fluctuation is correctly
represented.

What we have here shown is that a rather naive interpretation of the four-dimen-
sional picture turns out to be correct. This makes four-dimensional theory rather easier
than we had a right to expect. I do not think that an alternative proof of the results
in § 3 can be obtained in this way. If central or stereographic projection is substituted
for orthogonal projection, the standard deviation of the centroid of the projected points
is not equal to R,/2,/N. It would be difficult to justify the preference for orthogonal
projection without reference to the full investigation in § 3.

According to general relativity theory local irregularities of curvature are superposed
on the cosmical hypersphere. It might seem that the next step in unified theory would
be to derive these local curvatures from statistical fluctuations by some extension of
the theory of § 3. But that would be a misunderstanding of the relation between molar
and microscopic theory, and of the relation of unified theory to both. Normally the
formulae of general relativity theory which covers molar physics and of quantum
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theory which covers microscopic physics are not comparable. Being intended for
different fields of application, they introduce different kinds of approximation; so that
usually when a problem is such that the approximations of general relativity theory
are valid, the approximations of quantum theory are invalid, and vice versa. To unite
the two theories we have to seek out special conditions in which the approximations
of both are satisfied, so that the methods of both are rigorously applicable. A uniform
steady distribution, or Einstein universe, provides such a meeting point.

To show how the approximations of the two theories diverge, let us consider the
most typical feature of quantum theory. Quantisation is a complication which arises
from uniformity and symmetry; for in these conditions there is a persistence of certain
dynamical integrals (usually integrals of angular momentum) which invalidates the
assumption on which the practice of molar averaging is based. A slight non-uniformity
is treated in quantum theory as a perturbation, which does not modify the integrals
though it reduces the time that they persist. Thus as the non-uniformity increases the
importance of quantisation fades away. When it appears that quantal effects are no
longer important, the conditions for the usual molar averaging are satisfied; and, by
a discontinuous change of method, we pass over to the representation of non-uniformity
by irregular curvature.

To show more definitely the incompatibility of method, consider an atom in the
slightly non-uniform environment which corresponds to an irreducible gravitational
field. The non-uniformity would be treated in quantum theory as a perturbation
having no effect on the eigenstates of the atom but inducing transitions between them.
The eigenstates are determined by a wave equation which, when expressed in tensor
form, contains the tensor g,,. Since the eigenstates are the same with or without the
non-uniformity, so also are the wave equation and the coefficients g, contained in it.
But this directly conflicts with general relativity theory which represents the gravi-
tational field by modifying the g,,.

To take account of an irreducible gravitational field in the wave equatzon by using the
9, which represent the gravitational field in molar theory would be, not a refinement, but
an error.® The principle of equivalence does not apply. Formally this remains true for
structures so extensive that the molar g, differ considerably from the uniform g,
used in the wave equation; but, since a wide deviation implies that transitions between
the eigenstates are very frequent, the wave analysis ceases to be useful. This is the
fading out of quantisation already mentioned, which leaves us free to change our method
and redescribe the system in terms of the non-uniform g,, of molar theory.

The distinction between ‘special’ and ‘general’ relativity theory is well known. In
considering the connection with quantum theory, it would be useful to distinguish
also an ‘intermediate’ relativity theory. Special theory is limited to flat space-time;
tntermediate theory is an extension to curved but uniform space-time; general theory is
a further extension to non-uniform curvature. It is intermediate theory that links up
with quantum theory. Since the formulae of general relativity cover intermediate
relativity, they will be used from time to time in our development of quantum theory,
but always in their particular application to uniform curvature.

& Thus attempts to ‘extend Dirac’s wave equation to general relativity’ are misguided, but probably
the intention is only to extend it to generalised coordinates in flat space by putting it into tensor form.
This is a purely mathematical transformation in no way dependent on the theory of relativity.
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7. Uranoids

For the purpose of investigation we divide the universe into two parts, namely, an
object-system and its environment. The term ‘object-system ™ (object-particle, object-
field, etc.) is used to distinguish the part that is being intensively studied. The environ-
ment comprises everything not specifically included in the object-system, whether
surrounding it or permeating it. It might alternatively be described as the ‘back-
ground’.

The environment must never be left out of consideration. It would be idle to develop
formulae for the behaviour of an atom in conditions which imply that the rest of the
matter of the universe has been annihilated. In relativity theory we do not recognise
the concept of an atom as a thing complete in itself. We can no more contemplate an
atom withput a physical universe to put it in than we can contemplate a mountain
without a planet to stand it on. '

The most elementary formulae of physics relate to very simple object-systems in
very simple environments. Just as we have to begin with very simple objects—
electrons, two-particle systems, etc.—so we have to begin with very simple environ-
ments—uniform, electrically neutral, etc. These simple environments will be called
uranoids. A uranoid is an ideally simplified universe just as a geoid is an ideally simpli-
fied earth, and it is used in an analogous way.

The uranoid adopted as standard environment for our object-systems is naturally
taken to be a steady uniform probability distribution of particles. This, as we have
seen, constitutes an Einstein universe, and occupies a hyperspherical space. Usually
it is further specialised as a ‘zero-temperature uranoid’ so that the particles are at
almost exact rest.? The advantage of zero temperature is that the environment then
consists of material particles only; whereas if the temperature is not zero it includes
radiation. The standard uranoid is also taken to be electrically neutral; so that if a
molar electromagnetic field has to be considered, it must be included in the object-
gystem. _ :

The whole universe, usually idealised as a standard uranoid, is a partner in every
problem. That does not mean that we attribute to the remote environment any greater
share in determining local phenomena than is ordinarily admitted in relativity theory.
In particular, the most radical change in the distribution of the extra-galactic nebulae
only affects small-scale systems to the extent to which it alters g,, in the locality
considered—an effect almost entirely eliminated by a local transformation of co-
ordinates. We include the whole environment in order to save the trouble of dividing it.
For, if we introduce a boundary, we give ourselves the extra trouble of discovering
boundary conditions which shall have the same effect as a continuation of the environ-
ment beyond the boundary.

Two lines of approach have led us to consider a system of a very large number of
particles in conjunction with the small system that is being intensively studied. In
§2 it was a question of metric; the large system determines the uncertainty of the
physical reference frame, and hence the scale of the various structures in that frame.
Now it is a question of mechanics; the environment of the object-system is actually a
vast assemblage of particles, and we have to consider the physical interaction. But these
two effects are really identical. Einstein’s theory, by unifying geometry and mechanics,

& For the significance of ‘almost exact’ see § 10.



