RREM % - i+ TIERT

A
Yy

PEARSON
—

Addison
Wesley

Refactoring

Improving the Design of Existing Code

iy
B 3 AT AR i i

(BENR)

[2%]Martin Fowler #

Reractoring
IMPROVING THE DESIGN - ! . R0
OF EXISTING CODE b CUEHHREAD) FFAMRI %
\I\Rllh\ F.(:\‘\’VI,IER LQ-LH;';EI\: ﬁ ﬁ Erich Gamma }J "XA I';ﬁ:, i’; =

A AU SRS IR BN 8 Tl

=
Eﬂ’f@@/ﬁﬂiﬁéd

www.infopower.com.cn

NMERR - RHETERT

Refactoring

Improving the Design of Existing Code

g
o5 0 A PR 3
(S BN) I LbeREAE

[2]Martin Fowler %

A DS G oL

Refactoring: improving the design of existing code(ISBN 0-201-48567-2)

Martin Fowler
Copyright © 2000 Addison Wesley Longman, Inc.
Original English Language Edition Published by Addison Wesley Longman, Inc.

All rights teserved.
Reprinting edition published by PEARSON EDUCATION NORTH ASIA LTD and CHINA ELECTRIC

POWER PRESS, Copyright © 2003.

&R ENNT i Pearson Education ¥ 8L 7 M ARAL 2R BSE A (B, 148 AT BUX 0 & 95 4

XERAH) BKHRL. KT,
REMRE BEFAT, RELUER TR E SRPEAR B EEME S .

A B HEIGH Pearson Education Bi 1R, TREEFBYE,
ERIEAREREREILS: EF: 01-2003-1021
For sale and distribution in the People’s Republic of China exclusively (except Taiwan, Hong Kong SAR

and Macao SAR).
R TFHEARICEEN (REFFERFE. @ T RR A ESER) 248817,

HBEmamE (CIP) ¥iE

BEA—AEEFRBORY / (B @ =F. Bk, —dbs. PEBHHEE, 2003
(FRRRE - IETERFD

ISBN 7-5083-1501-4

LE. U4 IACH-EFRH-E VTP

FERAEBE CIP HIEESF (2003) % 027835 &

w.retactoring.cor

A HRE B MR FA e hittp:/iww

M BB RRRE - RETERS]

& EM—AEESKREYRT (BHR
] #: () Martin Fowler
RERE: X

HRCRAT: B AR
Hagk: LR = RS BRBI4wES: 100044

Bif: (010) 88515918 f£ HE: (010) 88518169
En R AR EDRS
F O&: 787X1092 1/16 B 9k:28.75
+# &: ISBN7-5083-1501-4

B % 20034 7 ALREB 1R 2004 5 1 A58 3 KENRY
5E fr: 49.00 7
BB BELR

Smell

Alternative Classes
with Different
Interfaces, p. 85

Common Refactorings

Rename Method (273), Move Method (142)

Comments, p. 87

Extract Method (110), Introduce Assertion (267)

Data Class, p. 86

Move Method (142), Encapsulate Field (206),
Encapsulate Collection (208)

Data Clumps, p. 81

Extract Class (149), Introduce Parameter Object
(295), Preserve Whole Object (288)

Divergent Change,
p. 79

Extract Class (149)

Duplicated Code,
p.76

Extract Method (110), Extract Class (148), Pull Up
Method (322), Form Template Method (345)

Feature Envy, p. 80

Move Method (142), Move Field (146), Extract
Method (110)

Inappropriate
Intimacy, p. 85

Move Method (142), Move Field (146), Change
Bidirectional Association to Unidirectional (200),
Replace Inheritance with Delegation (352), Hide
Delegate (157)

Incomplete Library
Class, p. 86

Introduce Foreign Method (162), Introduce Local
Extension (164)

Large Class, p. 78

Extract Class (149), Extract Subclass (330), Extract
Interface (341), Replace Data Value with Object
(175)

Lazy Class, p. 83

Inline Class (154), Collapse Hierarchy (344)

Long Method, p. 76

Extract Method (110), Replace Temp with Query
(120), Replace Method with Method Object (135),

‘| Decompose Conditional (238)

Smell

Long Parameter List,
p.78

Common Refactorings
]

Replace Parameter with Method (292), Introduce
Parameter Object (295), Preserve Whole Object
(288)

Message Chains,
p. 84

Hide Delegate (157)

Middle Man, p. 85

Remove Middle Man (160), inline Method (117),
Replace Delegation with Inheritance (355)

Parallel Inheritance
Hierarchigs, p. 83

Move Method (142), Move Field (146)

Primitive Obsession,
p. 81

Replace Data Value with Object (175), Extract
Class (1489), Introduce Parameter Object (295),
Replace Array with Object (186), Replace Type
Code with Class (218), Replace Type Code with
Subclasses (223), Replace Type Code with State/
Strategy (227)

Refused Bequest,
p. 87

Reaplace Inheritance with Delegation (352)

Shotgun Surgery, Move Method (142), Move Field (146), Inline Class
p. 80 (154)
Speculative Collapse Hierarchy (344), Inline Class (154),

Generality, p. 83

Remove Parameter (277), Rename Method (273)

Switch Statements,
p. 82

Replace Conditional with Polymorphism (255),
Replace Type Code with Subclasses (223),
Replace Type Code with State/Strategy (227),
Replace Parameter with Explicit Methods (285),
Introduce Null Object (260)

Temporary Field,
p. 84

Extract Class (148), Introduce Null Object (260)

’

Foreword

“Refactoring” was conceived in Smalltalk circles, but it wasn’t long before it
found its way into other programming language camps. Because refactoring is
integral to framework development, the term comes up quickly when “frame-
workers” talk about their craft. It comes up when they refine their class hierar-
chies and when they rave about how many lines of code they were able to
delete. Frameworkers know that a framework won’t be right the first time
around—it must evolve as they gain experience. They also know that the code
will be read and modified more frequently than it will be written. The key to
keeping code readable and modifiable is refactoring—for frameworks, in partic-
ular, but also for software in general.

So, what’s the problem? Simply this: Refactoring is risky. It requires changes
to working code that can introduce subtle bugs. Refactoring, if not done prop-
erly, can set you back days, even weeks. And refactoring becomes riskier when
practiced informally or ad hoc. You start digging in the code. Soon you discover
new opportunities for change, and you dig deeper. The more you dig, the more
stuff you turn up. . .and the more changes you make. Eventually you dig your-
self into a hole you can’t get out of. To avoid digging your own grave, refac-
-toring must be done systematically. When my coauthors and I wrote Design
Patterns, we mentioned that design patterns provide targets for refactorings.
However, identifying the target is only one part of the problem; transforming
your code so that you get there is another challenge.

Martin Fowler and the contributing authors make an invaluable contribution
to object-oriented software development by shedding light on the refactoring
process. This book explains the principles and best practices of refactoring, and
points out when and where you should start digging in your code to improve it.
At the book’s core is a comprehensive catalog of refactorings. Each refactoring
describes the motivation and mechanics of a proven code transformation. Some
of the refactorings, such as Extract Method ar Move Field, may seem obvious.

Xm

FOREWORD

But don’t be fooled. Understanding the mechanics of such refactorings is the key
to refactoring in a disciplined way. The refactorings in this book will help you
change your code one small step at a time, thus reducing the risks of evolving
your design. You will quickly add these refactorings and their names to your
development vocabulary.

My first experience with disciplined, “one step at a time” refactoring was
when I was pair-programming at 30,000 feet with Kent Beck. He made sure
that we applied refactorings from this book’s catalog one step at a time. I was
amazed at how well this practice worked. Not only did my confidence in the
resulting code increase, I also felt less stressed. I highly recommend you try
these refactorings: You and your code will feel much better for it.

—Erich Gamma
Object Technology International, Inc.

B S 3 -

Preface

Once upon a time, a consultant made a visit to a development project. The con-
sultant looked at some of the code that had been written; there was a class hier-
archy at the center of the system. As he wandered through the hierarchy, the
consultant saw that it was rather messy. The higher-level classes made certain
assumptions about how the classes would work, assumptions that were embod-
ied in inherited code. That code didn’t suit all the subclasses, however, and was
overridden quite heavily. If the superclass had been modified a little, then much
less overriding would have been necessary. In other places some of the intention
of the superclass had not been properly understood, and behavior present in the
superclass was duplicated. In yet other places several subclasses did the same
thing with code that could clearly be moved up the hierarchy.

The consultant recommended to the project management that the code be
looked at and cleaned up, but the project management didn’t seem enthusiastic.
The code seemed to work and there were considerable schedule pressures. The
managers said they would get around to it at some later point.

The consultant had also shown the programmers who had worked on the
hierarchy what was going on. The programmers were keen and saw the prob-
lem. They knew that it wasn’t really their fault; sometimes a new pair of eyes
are needed to spot the problem. So the programmers spent a day or two clean-
ing up the hierarchy. When they were finished, the programmers had removed
half the code in the hierarchy without reducing its functionality. They were
pleased with the result and found that it became quicker and easier both to add
new classes to the hierarchy and to use the classes in the rest of the system.

The project management was not pleased. Schedules were tight and there
was a lot of work to do. These two programmers had spent two days doing
work that had done nothing to add the many features the system had to deliver
in a few months time. The old code had werked just fine. So the design was a
bit more “pure” a bit more “clean.” The project had to ship code that worked,

Xv

PREFACE

not code that would please an academic. The consultant suggested that this
cleaning up be done on other central parts of the system. Such an activity might
halt the project for a week or twa. All this activity was devoted to making the
code look better, not to making it do anything that it didn’t already do.

How do you feel about this story? Do you think the consultant was right to
suggest further clean up? Or do you follow that old engineering adage, “if it
works, don’t fix it”?

I must admit to some bias here. I was that consultant. Six months later the
project failed, in large part because the code was too complex to debug or to
tune to acceptable performance.

The consultant Kent Beck was brought in to restart the project, an exercise
that involved rewriting almost the whole system from scratch. He did several
things differently, but one of the most important was to insist on continuous
cleaning up of the code using refactoring. The success of this project, and role
refactoring played in this success, is what inspired me to write this book, so that
I could pass on the knowledge that Kent and others have learned in using refac-
toring to improve the quality of software.

What Is Refactoring?

Refactoring is the process of changing a software system in such a way that it
does not alter the external behavior of the code yet improves its internal struc-
ture. It is a disciplined way to clean up code that minimizes the chances of
introducing bugs. In essence when you refactor you are improving the design of
the code after it has been written.

“Improving the design after it has been written.” That’s an odd turn of
phrase. In our current understanding of software development we believe that
we design and then we code. A good design comes first, and the coding comes
second. Over time the code will be modified, and the integrity of the system, its
structure according to that design, gradually fades. The code slowly sinks from
engineering to hacking.

Refactoring is the opposite of this practice. With refactoring you can take a
bad design, chaos even, and rework it into well-designed code. Each step is sim-
ple, even simplistic. You move a field from one class to anothet, pull some code
out of a method to make into its own method, and push some code up or down
a hierarchy. Yet the cumulative effect of these small changes can radically
improve the design. It is the exact reverse of the normal notion of software
decay.

PREFACE

With refactoring you find the balance of work changes. You find that design,
rather than occurring all up front, occurs continuously during development.
You learn from building the system how to improve the design. The resulting
interaction leads to a program with a design that stays good as development

continues.

What’s in This Book?

This book is a guide to refactoring; it is written for a professional program-
mer. My aim is to show you how to do refactoring in a controlled and efficient
manner. You will learn to refactor in such a way that you don’t introduce bugs
into the code but instead methodically improve the structure.

It’s traditional to start books with an introduction. Although I agree with
that principle, I don’t find it easy to introduce refactoring with a generalized
discussion or definitions. So I start with an example. Chapter 1 takes a small
program with some common design flaws and refactors it into a more accept-
able object-oriented program. Along the way we see both the process of refac-
toring and the application of several useful refactorings. This is the key chapter
to read if you want to understand what refactoring really is about.

In Chapter 2 I cover more of the general principles of refactoring, some defi-
nitions, and the reasons for doing refactoring. I outline some of the problems
with refactoring. In Chapter 3 Kent Beck helps me describe how to find bad
smells in code and how to clean them up with refactorings. Testing plays a very
important role in refactoring, so Chapter 4 describes how to build tests into
code with a simple open-source Java testing framework.

The heart of the book, the catalog of refactorings, stretches from Chapter §
through Chapter 12. This is by no means a comprehensive catalog. It is the
beginning of such a catalog. It includes the refactorings that 1 have written
down so far in my work in this field. When I want to do something, such as
Replace Conditional with Polymorphism (255), the catalog reminds me how to
do it in a safe, step-by-step manner. I hope this is the section of the book you’ll
come back to often.

In this book I describe the fruit of a lot of research done by others. The last
chapters are guest chapters by some of these people. Chapter 13 is by Bill
Opdyke, who describes the issues he has come across in adopting refactoring in
commercial development. Chapter 14 is by Don Roberts and John Brant, who
describe the true future of refactoring, automated tools. Pve left the final word,
Chapter 15, to the master of the art, Kent Beck.

PREFACE

Refactoring in Java

For all of this book I use examples in Java. Refactoring can, of course, be done
with other languages, and I hope this book will be useful to those working with
other languages. However, I felt it would be best to focus this book on Java
because it is the language I know best. [have added occasional notes for refac-
toring in other languages, but I hope other people will build on this foundation
with books aimed at specific languages. .

To help communicate the ideas best, 1 have not used particularly complex
areas of the Java language. So I've shied away from using inner classes, reflec-
tion, threads, and many other of Java’s more powerful features. This is because
I want to focus on the core refactorings as clearly as I can.

I should emphasize that these refactorings are not done with concurrent or
distributed programming in mind. Those topics introduce additional concerns
that are beyond the scope of this book.

Who Should Read This Book?

This book is aimed at a professional programmer, someone who writes soft-
ware for a living. The examples and discussion include a lot of code to read and
understand. The examples are all in Java. I chose Java because it is an increas-
ingly well-known language that can be easily understood by anyone with a
background in C. It is also an object-oriented language, and object-oriented
mechanisms are a great help in refactoring.

Although it is focused on the code, refactoring has a large impact on the
design of system. It is vital for senior designers and architects to understand the
principles of refactoring and to use them in their projects. Refactoring is best
introduced by a respected and experienced developer. Such a developer can best
understand the principles behind refactoring and adapt those principles to the
specific workplace. This is particularly true when you are using a language
other than Java, because you have to adapt the examples Pve given to other lan-
guages.

Here’s how to get the most from this book without reading all of it.

® If you want to understand what refactoring is, read Chapter 1; the exam-
ple should make the process clear.

@ If you want to understand why you should refactor, read the first two
chapters. They will tell you what refactoring is and why you should do it.

PREFACE

u If you want to find where you should refactor, read Chapter 3. It tells you
the signs that suggest the need for refactoring.

@ If you want to actually do refactoring, read the first four chapters com-
pletely. Then skip-read the catalog. Read enough of the catalog to know
roughly what is in there. You don’t have to understand all the details.
When you actually need to carry out a refactoring, read the refactoring in
detail and use it to help you. The catalog is a reference section, so you
probably won’t want to read it in one go. You should also read the guest

chapters, especially Chapter 15.

Building on the Foundations Laid by Others

I need to say right now, at the beginning, that I owe a big debt with this book, a
debt to those whose work over the last decade has developed the field of refac-
toring, Ideally one of them should have written this book, but I ended up being
the one with the time and energy.

Two of the leading proponents of refactoring are Ward Cunningham and
Kent Beck. They used it as a central part of their development process in the
carly days and have adapted their development processes to take advantage of
it. In particular it was my collaboration with Kent that really showed me the
importance of refactoring, an inspiration that led directly to this book.

Ralph Johnson leads a group at the University of Illinois at Urbana-Cham-
paign that is notable for its practical contributions to object technology. Ralph
has long been a champion of refactoring, and several of his students have
worked on the topic. Bill Opdyke developed the first detailed written work on
refactoring in his doctoral thesis. John Brant and Don Roberts have gone
beyond writing words into writing a tool, the Refactoring Browser, for refactor-
ing Smalltalk programs.

Acknowledgments

Even with all that research to draw on, I still needed a lot of help to write this
book. First and foremost, Kent Beck was a huge help. The first seeds were
planted in a bar in Detroit when Kent told me about a paper he was writing for
the Smalltalk Report [Beck, hanoi]. It not only provided many ideas for me to
steal for Chapter 1 but also started me off in taking notes of refactorings. Kent
helped in other places too. He came up with the idea of code smells, encouraged

PREFACE

me at various sticky points, and generally worked with me to make this book
work. I can’t help thinking he could have written this book much better him-
self, but I had the time and can only hope I did the subject justice.

As I've written this, I wanted to share much of this expertise directly with
you, so I’m very grateful that many of these people have spent some time add-
ing some material to this book. Kent Beck, John Brant, William Opdyke, and
Don Roberts have all written or co-written chapters. In addition, Rich Garzan-

iti and Ron Jeffries have added useful sidebars.

Any author will tell you that technical reviewers do a great deal to help in a
book like this, As usual, Carter Shanklin and his team at Addison-Wesley put
together a great panel of hard-nosed reviewers. These were

® Ken Auer, Rolemodel Software, Inc.

m Joshua Bloch, Sun Microsystems, Java Software

m John Brant, University of Illinois at Urbana-Champaign
w Scott Corley, High Voltage Software, Inc.

w Ward Cunningham, Cunningham & Cunningham, Inc.
m Stéphane Ducasse

m Erich Gamma, Object Technology International, Inc.

Ron Jeffries

m Ralph johnson, University of Illinois

m Joshua Kerievsky, Industrial Logic, Inc.

Doug Lea, SUNY Oswego

m Sander Tichelaar

They all added a great deal to the readability and accuracy of this book, and
removed at least some of the errors that can lurk in any manuscript. I'd like to
highlight a couple of very visible suggestions that made a difference to the look
of the book. Ward and Ron got me to do Chapter 1 in the side-by-side style.
Joshua suggested the idea of the code sketches in the catalog.

In addition to the official review panel there were many unofficial reviewers.
These people looked at the manuscript or the work in progress on my Web
pages and made helpful comments. They include Leif Bennett, Michael Feath-
ers, Michael Finney, Neil Galarneau, Hisham Ghazouli, Tony Gould, John
Isner, Brian Marick, Ralf Reissing, John Salt, Mark Swanson, Dave Thomas,

PrREFACE v

and Don Wells. I'm sure there are others who I've forgotton; I apologize and
offer my thanks.

A particularly entertaining review group is the infamous reading group at the
University of Illinois at Urbana-Champaign. Because this book reflects so much
of their work, I'm particularly grateful for their efforts captured in real audio.
This group includes Fredrico “Fred” Balaguer, John Brant, Ian Chai, Brian
Foote, Alejandra Garrido, Zhijiang “John” Han, Peter Hatch, Ralph Johnson,
Songyu “Raymond” Lu, Dragos-Anton Manolescu, Hiroaki Nakamura, James
Overturf, Don Roberts, Chieko Shirai, Les Tyrell, and Joe Yoder.

Any good idea needs to be tested in a serious production system. I saw refac-
toring have a huge effect on the Chrysler Comprehensive Compensation system
(C3). I want to thank all the members of that team: Ann Anderson, Ed Anderi,
Ralph Beattie, Kent Beck, David Bryant, Bob Coe, Marie DeArment, Margaret
Fronczak, Rich Garzaniti, Dennis Gore, Brian Hacker, Chet Hendrickson, Ron
Jeffries, Doug Joppie, David Kim, Paul Kowalsky, Debbie Mueller, Tom
Murasky, Richard Nutter, Adrian Pantea, Matt Saigeon, Don Thomas, and Don
Wells. Working with them cemented the principles and benefits of refactoring
into me on a firsthand basis. Watching their progress as they use refactoring
heavily helps me see what refactoring can do when applied to a large project
over many years.

Again I had the help of J. Carter Shanklin at Addison-Wesley and his team:
Krysia Bebick, Susan Cestone, Chuck Dutton, Kristin Erickson, John Fuller,
Christopher Guzxkowskl, Simone Payment, and Genevieve Rajewski. Working
with a good publisher is a pleasure; they provided a lot of support and help.

Talking of support, the biggest sufferer from a book is always the closest to
the author, in this case my (now) wife Cindy. Thanks for loving me even when 1
was hidden in the study. As much time as I put into this book, I never stopped
being distracted by thinking of you.

Martin Fowler

Melrose, Massachusetts

fowler@acm.org

bttp:/lourworld. compuserve com/homepages/martin_fowler

Contents

Foreword.coiiiiiiiiiiiinennrnosassnsonsasasons xiii

Preface. cciiiiiii ittt i i it et e, XV

What Is Refactoring?c.ccoveivnivninneennn. xvi

What'sin ThisBook?ccvviiiininnnnnn, xvii

Who Should Read ThisBook? xviii

Building on the Foundations Laid by Others xix

Acknowledgments 0., Xix

Chapter 1: Refactoring, a First Example et race e 1

The StartingPointcoivrienenrnennnnnn. 1

The First Step in Refactoring 7

Decomposing and Redistributing the Statement Method 8
Replacing the Conditional Logic on Price Code

with Polymorphism P 34

Final Thoughts e .. 52

Chapter 2: Principles in Refactoring Ceresseransanes 53

Defining Refactoringccovunn.. 53

Why Should You Refactor? e 55

When Should YouRefactor?t 57

What Dol TellMy Manager?coovveinnnenn.. 60

Problems with Refactoring 62

Refactoringand Designcoviiininiinnnen.. 66

Refactoring and Performance et 69

Where Did Refactoring Come From? 71

v CONTENTS

Chapter 3: Bad Smells in Code (by Kent Beck and Martin Fowler) .. 75

DuplicatedCodeccvivriiiinennennn.. 76
LongMethod i, 76
LargeClass.......... ..o, 78
Long Parameter List e e e 78
DivergentChange 79
Shotgun Surgery i, 80
FeatureEnvy 80
DataClumpso, 81
Primitive Obsession 0., 81
Switch Statements 82
Parallel Inheritance Hierarchies 83
Lazy Classoviuiiinniii i, 83
Speculative Generalityou..... 83
Temporary Field ettt 84
Message Chainscoiiiiiiniinnennnnn... 84
MiddleMan0ttt 85
Inappropriate Intimacy ..., e 85
Alternative Classes with Different Interfaces 85
Incomplete Library Class 86
DataClassc.oiiiiiiiiiiiiiinnnnn, 86
Refused Bequestcviiinnn.... 87
Commentsiiiiiiiiiininaa.. 87
Chapter 4: Building Tests.ooviiininrennenrnennn.. 89
The Value of Self-testing Code 89
The JUnit Testing Framework 91
AddingMore Tests........vvieiinnnennnnnnnn... 97
Chapter 5: Toward a Catalog of Refactorings 103
Format of the Refactorings Seeee 103
Finding Referencescoiun., 10S
How Mature Are These Refactorings? 106
Chapter 6: Composing Methods.ccovuunn.... 109
ExtractMethod 110

Inline Method et e et r e 117

CONTENTS

Inline Temp . ..o it it ie it n e ierenee e 119
Replace Tempwith Query 120
Introduce Explaining Variable 124
Split Temporary Variable 128
Remove Assignments to Parameters 131
Replace Method with Method Object 135
Substitute Algorithm 139
Chapter 7: Moving Features BetweenObjects. 141
MoveMethod i, 142
MoveField it 146
ExtractClass e e e 149
InlineClass 154
Hide Delegate i, 157
Remove MiddleMan 160
Introduce Foreign Method 162
Introduce Local Extension 164
Chapter 8: OrganizingData.ooivvveniernnennnn... 169
Self Encapsulate Field 171
Replace Data Value with Object 175
Change Value to Reference 179
Change Referenceto Value 183
Replace Array withObject 186
Duplicate Observed Data 189
Change Unidirectional Association to Bidirectional 197
Change Bidirectional Association to Unidirectional 200
Replace Magic Number with Symbolic Constant 204
Encapsulate Field 206
Encapsulate Collection 208
Replace Record with Data Class 217
Replace Type Code with Class 218
Replace Type Code with Subclasses 223
Replace Type Code with State/Strategy 227

Replace Subclass with Fields 232

