F G Beli



Ground

Engineer’s
Reference
Book |

Edited by

F G Bell

With spécialist contributors

Butterworths

gondqn . Boston - Durban - Singapore © °

ydney - Toronto - Weilington



All rights reserved. No part of this publication may be
reproduced or transmitted in any form or by any means,
including photocopying and recording without the written
permission of the copyright holder, application for which
should be addressed to the publishers. Such written
permission must also be obtained before any part of this
publication is stored in a retrieval system of any nature.

This book is sold subject to the Standard Conditions of Sale
of Net Books and may not be resold in the UK below the net
price given by the Publishers in their current price list.

First published 1987

¢* Butterworth and Co (Publishers) Ltd 1987

British Library Cataloguing in Publication Data

Ground engineer’s reference book.
1. Civil engincering
I. Bell, F.G.
624 TA145

ISBN 0-408-01173-4

Libecary of Congress Cataloging-in-Publicatioa Data

Ground engineer’s reference book.

Includes bibliographies and index.
{. Engineering geology —Handbooks. manuals, etc.
2. Soil mechanics—Handbooks, manuals, etc.
3. Rock mechanics—Handbooks, manuals, etc.
1. Beli, F. G. (Frederic Gladstone)
TA705.G73 1987  624.1'51 87-5134

ISBN 0-408-01173-4

Filmset by Mid-County Press,

2a Merivale Road, London SW15 2NW i
- Printed and bound in Great Britain by o
Robert Hartnoll LidiiBodmin, Comwall



The idea of « reference book for ground engineers was suggested
to me by Don Goodsell, a former commissioning editor for
Butterworth Scientific Ltd. He also suggested that such a book
should have a very wide appeal and that this, no doubt, could be
achieved by recruiting authors from around the world. At that
time this concept captured my imagination; in fact T was rather
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displeased that I had not thought of this myself. However, like -

many good ideas, implementation of the project proved to be a
very different matter. It must be recorded that the production of
" this tome has caused me both headaches and heartaches, anguish
and despair. and has consumed an extraordinary amount of time
and effort these past four years. Indeed it has been a major cause
of my premature ageing. Yet, with (ypical magpanimity, 1 still
regard Don as a good friend. Nor can I complain, since I was
warned on several occasions by a friend and colleague (T.H.H.)
of the difficulties that would be iivolved {and the fricod grossly

underestimated!). And so it was with typical British spirit (ie. -

complete ignorance and total unpreparedness) that I embarked
upon my task.

Now to more serious matters! The book itself sets out to
provide a concisc general coverage of those aspects of
engineeting which are involved with the ground. As such, it is
obviously aimed at those practising engineers who seek their
living by toiling on or in the ground. The book is divided into five
parts. The first part considers the properties and behaviour of
ground materials. The second outlines the various means by
which the ground is investigated. Some ground has to be
improved hefore it can be developed, hence this represents the
subject matter of the third part. Then part four deals with
construction on or in the ground. Finally, the last part covers
numerical methods and 1odelling as related to grounc
enginecring. Like every subject, ground engineering has made
great advances in recent years. It is hoped that most of these, if
not all, have been incorporated somewhere in this text.

As with all reference books. this volume does not pretend to be
a complete and exhaustive compilation of the subject matter it
deals with. It is not meant to act as a replacement for other
sources of material. Hence it does not seek to supplant tried and
trusty textbooks, codes and standards of practice, or papers in
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learned journals. Nonetheless it is hoped that, first, it will become
one of the first books that ihe engineer will take from his sheives
when he needs guidance with a particular problem in ground
engineering and, secondly, that it will represent a quick and
useful means of refreshing his memory. The book provides a
general source of basic knowledge, although the individual
chapters have been written by specialists in the particular subject
concerned. Accordingly a comprehensive number of references
are provided for the reader to gain further detail regarding the
particular topic of interest. The original aim was that the book
should have a practical bias so as to appeal to practising
engineers, but that at the same time the fundamental theor
should not be neglected. The readers, of course, will be the judges
of whether or not this aim has been achieved.

In producing this reference book, I have received much help
and advice. In particular, a great debt is owed 1o the late
Professor W. F.Cassie, C.B.E. Bill was one of those men who
always gave of his time willingly, whose advice was always
constructive and therefore much valued and appreciated, and
who always encouraged and praised one’s efforts. It was he who
gave this book its structure, among other things. He is sorely
missed! Others who deserve mention include Professor D.
Brunsden, Professor S. Budavari, Professor 1. W. Farmer, Dr J.
R. Hall, Professor T. H. Hanna, Professor B. G. Hardin,
Professor H. L. Jessberger, Professor W. R. Judd, Professor G.S.
Littlejohn, Dr E. J. Klohn, Professor R. Mark, Dr A. C. Meigh,
0O.B.E,, Professor A. Myslivec, Dr J. W, Norman, Professor D.
G. Price, Dr F. J. Sanger and Professor Christian Veder.

Thanks also must be accorded to those authors. who have
taken part in this enterprise. At this point special mention must
be made of the late Professor Arpad Keézdi. His chapter was the
last written contribution which that giant in geotechnicat

engineering made Weare truly honoured. Indeed it has been my .
privilegeto work with so many notables in the field of ground:.

engineering.
v
Fred G. Bell
Blyth, Notts.
1986.
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While this book was being prepared, an outstanding author died
on 20 October 1983; Professor Dr  Arpad i Kezdi, an
internationally respected sepresentative of Hungarian technical
science, and a highly regarded European, in the true sense of the
word.

Professor Keézdi was born in Komarom, Hungary, on 19

November 1919 and studied civil engineering at the Technical -

University of Budapest. His teacher of soil mechanics, Profcssor
Jaky, aroused his interest in this relatively new technical science.
In 1942 he obtained his diploma and in 1958 his doctorate. When
Professor Jaky died in 1950, A. Kézdi became a university
teacher at the Institute for Soil Mechanics and Foundation
Engineering, together with Professor Dr K. Szechy. In 1961 he
was appointed full Professor for soil mechanics.

His international reputation was sccured with the book
Erddrucktheorien: (Earth-pressure theories), published in

Germany in 1962. His predominent research interests were soil

physics, bearing capacity of foundations, scttlements, stress
distribution, piles, e1c. Besides these specialized topics he was not
only well-versed in the whole ficld of so0il mechanics, but was also
experienced in practical foundation engineering due to his
activities as a consultant in Hungary and abroad.

His tireless activity and creativity resulted in 44 books and
more than 150 other scientific publications - his major work

Obituary:
Professor Dr
Arpad Keézdi

being the four-volume Handbook of Soil Mechanics, which has
been translated into German, English, Spanish and Russian. In
addition he presented lectures in many cities of the world. In
appreciation of his scientific activity, honorary doctorates were
bestowed upon him by the Technical University of Dresden and
the Polytechnic of Agriculture in Vienna.

Professor Kezdi played an important role in the international
soil mechanics community. He was one of the main initiators of
the Danube-European Conferences and was Vice-President for
Europe of ISSMFE during the period 1973-1977. Having been
fluent in several languages and coming from a central European
country, he always emphasized the community of European
history and culture, bringing together east and west.

As a lover of the fine arts, he found relaxation in literature and
music. Participants of (Danube-) European Conferences would
certainly remember him reciting poems and singing several
lieder. Hi Hungarian and Austrian colleagues and his numerous
friends in the International Society of Soil Mechanics and
Foundation Engineering will long benefit from his life work and
will retain his memory with reverence.

H. Brand), N. Rohla
Yienna
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1.1 igneous rocks

Rocks are divided according to their origin into three groups.
namely. igneous rock. metamorphic rock and sedimentary rock.
Igneous rocks are formed when hot molten rock material, called
magma, solidifies. Magmas are developed either within oy
bencath the Earth’s crust. that is. 1n the uppermost region of the
mantle. They comprise hot solutions of several liquid phases. the
most conspicuous of which « a complex silicate phase. Henve
siicate minerals are ‘quanttatively the most importam
constituents of igneous rocks (Figure 1.1). Because silica is the
most important constituent in igncous rock 1t has been used to
distinguish the {ollowing groups

(1) Acid igneous rocks. over 65°,;

(2) Intermediate igneous rocks, 85 63°

(3) Basic igneous rocks, 4535

(4) Ultrabasic igneous rocks. less than 45°,.

The terms tend to be associated with various groups of igneous
rock. acid with granitic-rhyolitic rock: iniermediate  with
dioritic-andesitic rock; basic with gabbroic-basaltic rock; and
ultrabasic with rocks such as peridotite.

However. it would appear that most granitic igneous rocks are
developed by either granitization or anatexis. Granitization has
been defined as the process by which solid rocks are converted to
rocks of granitic character without passing through a magmatic
stage. Anatectic processes. which lead to the melting of rocks, are
not included within granitization. Rocks formed from remetted
material have a mixed or hybrid appearance and have been
referred to as migmatites.

The most important rock -forming minerals are often referred
to as felsic and mafic depending on whether they are light or dark
in colour, respectively. Felsic minerals include quartz. muscovite
mica, feldspars and feldspathoids, whilst ofivines. pyroxencs.
amphuboles and biotite mica are mafic minerals.

Usually, acidic igneous rocks are light in colour whereas basic

igneous rocks are dark in colour.

An igneous rock may be composed of an aggregate of ﬂyslaﬁ{ )

of natural glass. or of crystals and glass in varying proportions.
lgneous rocks may be divided into intrusive and extrusive types

. according to their mode of occurrence. In the former the magma
crystallizes within the Earth’s crust. whereas in the fatter it
solidifies at the surface. having been crupted as lavas andjor
pyroclasts from a volcano. The intrusions may be further
subdivided by size into major and mmor categories. The former
are developed in a plutonic. the latter in a hypubyssal
environment. ‘

L.1.1 Intrusions

The most important major intrusion is the batholith. Batholiths
are very large in size and are generally composed of granitic or
granodioritic rock. They 'are associated with orogenic regions.
Some batholiths would appesr to have no visible base ahd have
well-defined contacts which' dip steeply outwards. Bosses and
stocks probably represent upward extensions from deep seated
batholiths. Their surface exposures 4re of limited size, fréquently
less than 100 km*,

Dykes and sills are the commionest minor intrusions. The
former are discordant. that is, they traverse the host rocks at an
angle and are steeply dipping (Figure /.2). Asa consequence their
surface outerop is hardly affected by topography and commonly
they strike in a straight line. Dykes range in width up to several
tens of metres and their length of surface dutcrop also varies;
dykes have been traced at the surface for distances exceeding
200 km. Dykes often occur long faults, which provide a natural
path of escape for the intruded magma. Most dykes are of
basaltic composition, ‘'However, dykes may be multipie of

Igneous rocks 1/3

composite. Multiple dykes are formed by two or more injections
of the same material which occur at different times so that the
different phases are distinctly discernible. A composite dvke
involves two or more injections of magma of different
composition.

Sills. Iike dykes. are comparatively thin. parallel-sided igneous
intrusions which Irequently occur over relatively extensive areas.
Their thickness varies up 1o several hundred metres. However,
unlike dykes. they are injected n an approsimately horizontal
direction, although their attitude may be subsequently altered by
folding. When sills form in a series of sedimentary rocks the
magma is intruded along bedding plancs (Figure 1.3).
Nevertheless, an individual sill may transgress upwards from one
horizon 1o another. Because sills are intruded along bedding
planes. they are described as concordant and their outcrop is
similar to that of the country rocks. Sifls may be fed from dykes
and small dykes may arise from sills. Most sills are composed of
basic ignebus material. Like dykes, they may be multiple or

composite in character.

L.12 Volkapic activity

Eruptions from volcanoes are spasmodic rather than
continuous. Between eruptions activity may still be witnessed in
the form of steam and vapours issuing from small vents named
fumaroles or sulfataras. But in some volcanoes even this form of
surface manifestation ceases and such a dormant state may
continue for centuries. To all intents and purposes these
volcanoes appear extinet. In old age the activity of a volcano
becomes limited to emissions of gases from fumaroles and hot
water from geysers and hot springs.

Most material emitted by volcanoes is of basaltic composition.

davys are extravasated from volcanoes at temperatures only

sliglitly above their freczing point. During the course of their flow

o the tempergture falls outwards from’ within until solidification

urs somew here between 600 and 900°C. depending upan their
hemical composition and gas content. Basic lavas solidily ata

: highér temperature than do-acidic ones.

The rate of flow of a lava is determined by the gradient of the
slope down which it moves and by its viscosity which, in turn;is
govemed by its composition, temperature and volatile content.

- The'higher the'silica content of a lava, the greater isits viscosity.
* Henee basic lavas tend to flow much faster and further than do
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Figure 1.1 Approximate mineralogical composition of the
commaoner types of igneous rocks (plutonic types without brackets;
voltanic equivalents in Lrackets)
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acidic lavas. Indeed the former have been known to travel at
rates of up to 80 km 'h.

The surface of a lava solidifies before the main body of the flow
beneath. If this surface crust cracks before the lava has
completely solidified, then the fluid lava below may'ooze up
through the crack to form a squeeze-up. Pressure ridges are built
on the surface of lava flows where the solidified crustal zone is
pushed into a linear fold. Tumuli are upheavals of dome-like
shape whose formation may be aided by a localized increase in
hydrostatic pressure in the fluid lava beneath the crust. Pipes,
vesicle trains or spiracles may be ‘developed in a lava flow
depending on the amount of gas given off.

Thin lava flows are interrupted by joints which may either run
at right angles or parallel to the direction of flow. Joints do occur
with other orientations bwt they are much less common. Those
joints wiich are normal to the surface usually display a
polygonal arrangement but only rarely do they give rise to
columnar jointing. The joints develop as the lava cools. First
primary joints form, from which secondary joints arise and so it
continues. j

Figure 1.2 Basalt dykes on the south shore of the
Isle of Arran

Figure 1.3 ,Composite sill (basalt and quartz
porphyry) at Drumadoon Point, Isle of Arran

Typical columnar jointing is developed in thick flows of basalt
(Figure 1.4). The columns in columnar jointing are interrupted
by cross joints which may be either flat or saucer-shaped. The
latter may be convex up or down. These are not to be confused
with platey joints which are developed in lava flows as they
become more viscous on cooling so that slight shearing occurs
along flow planes.

When a magma is erupted it separates at low pressures into
lava and a gaseous phase. If the magma is viscous, then
separation is accompanied by explosive activity. On the other
hand, volatiles escape quietly from very fluid magmas.

~ Steam may account for 90°, or more of the gases emitted

during a volcanic eruption. Other gases present include carbon
dioxide, carbon monoxide, sulphur dioxide. sulphur trioxide,
hydrogen sulphidé, hydrogen chloride and hydrogen fluoride.

The amount of and rate at which gas escapes determine the
explosiveness of an eruption, an explosive eruption occurring
when, because of its high viscosity, magma cannot readily allow
the escape of gas. The term pyroclast is collectively applied to
material which has been fragmented by explosive volcanic



action. Pyroclasts may consist of fragments of lava exploded on
eruption, of fragments of pre-existing solidified lava or
pyroclasts, or of fragments of country rock.

The size of pyroclasts varies enormously. It is dependent upon
the viscosity of the magma, the violence of the explosive activity,
the amount of gas coming out of solution during the flight of the
pyroclast, and the height to which it is thrown. The largest blocks
thrown into the air may weigh over 100 tonnes whereas the
smallest consist of very fine ash which may take years to fall back
to the Farth’s surface. The largest pyroclasts are referred to as
volcanic bombs. Lapilli is applied to pyroclastic material which
has a diameter varying from about 10-50mm. The finest
pyroclastic material is called ash. Rocks which consist of
fragments of volcanic ejectamenta set in a fine grained
groundmass are termed agglomerate or volcanic breccia,
depending upon whether their fragments are rounded or angular
respectively.

After pyroclastic material has fallen back to the surface it
eventually becomes indurated. It is then described as tuff.
According to the material of which tuff is composed, distinction
can be made between ash tuff, pumiceous tuff and tuff breccia.
Tuffs are usually well-bedded and the deposits of individual
eruptions may be separated by thin bands of fossil soil or old
erosion surfaces. Mudflows are frequently interbedded with tuffs,
having formed when downpours of rain, associated with
eruption, mixed with ash.

When clouds of intensely heated incandescent lava spray fall to
the ground, they weld together. Because the particles become
intimately fused, they attain a largely pseudo-viscous state,
especially in the deeper parts of the deposits. The term ignimbrite
has been used to describe the resultant rock. If ignimbrites
develop on a steep slope, then they begin to flow. Hence they
frequently resemble lava flows.
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Figure 1.4 Columnar jointing in basalt lava
flows of the Giants' Causeway Northern
Ireland (courtesy of the Northern Ireland
Tourist Board)

1.2 Metamorphic rocks

Metamor phic rocks are derived from pre-existing rock types and
have undergone mineralogical, textural and structural changes.
The latter have been brought about by changes which have taken
place in the physical and chemical environments in which the
rocks existed. The processes responsible for change give rise to
progressive transformation which occurs in the solid state. The
changing conditions of temperature and/or pressure are the
primary agents causing metamorphic reactions in rocks.
Individual minerals are stable over limited temperature-pressure
conditions which means that when these limits are exceeded
mineralogical adjustment has to be made to establish
equilibrium with the new environment. When metamorphism
occurs there is ustually little alteration in the bulk chemical
composition of the rocks involved, that is, with the exception of
water. volatile constituents and organic matter, little material is
lost or gained.

1.2.1 Types of metamorphism

Thermal metamorphism occurs around igneous intrusions so
that the principle factor controlling these reactions is
temperature, shearing stress being of negligible importance. The
rate at which chemical reactions take place during thermal
metamorphism is exceedingly slow and depends upon the rock
type and temperatures involved. It has been estimated that the
reaction rate doubles for a rise of 10°C, whilst a rise of 100°C may
increase the rate by a thousand-fold and 200°C by a million-fold.
Equilibrium in metamorphic rocks, therefore, is attained more
readily at a higher grade than at a lower grade because reaction
proceeds more rapidly.
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As remarked above, thermal metamorphism is associated with
1gneous intrusions and the encircling zone of metamorphic rocks
is referred to as the contact aureole (Figure 1.5). The size of the
aureole depends upen the temperature and size of the intrusion,
the quantity of volatiles which emanated from it 10 the iypes of
country rocks involved. For example. aurcoles developed in
argillaceous sediments are more extensive than those found in
arenaceous or calcareous rocks. Nevertheless, the capricious
nature of thermal mc(ar_norph?sm must be emphasized. for even
within one formation of the same rock type the width of the
aureole may vary.

Within a contact aureole there is a sequence of mineralogical
changes from the country rocks te the intrusion. which have been
brought about by the effects of a decreasing thermal gradient
whose source was in the hot magma. Indeed aureoles developed
i argillaceous sediments may be concentrically zoned with
tespect Lo the intrusion. A frequently developed sequence varies
from spotted slates to schists then hofnfels. L

Dynamic metamorphism, like contact metamorphism. is
usually highly localized: for example, its effects may be found in
association with farge faults or thrusts. On a {:rgcr scale it is
associated with folding. however. in such instances it is difficult
to distinguish between the effects of dynamic metamorphism and
those of low-grade regional metamorphism. What can be said is
that at low temperatures recrystallization is at a minimum and
the character of a rock is governed by the mechanical processes
which have been operative. The processes of dynamic

metamorphism - include  brecciation, - cataclasis.  granulation,
mylonitization, pressure solution, partial melting and slight
recrystallization.

Brecciation is a process by which a rock is fractured. the
angular fragments produced being of varying size. Crush
breccias commonly are associated with faulting and thrusting.
The fragments of a crush breccia may themselves be fractured. If,
during the process of fragmentation, pieces are rotated, then they
are eventually rounded and embedded in worn-down powdered
material. The resultant rock is referred to as a crush
conglomerate. Mylonites are produced by the pulverization of
rocks. which not only involves extreme shearing stress but also
considerable confining pressure. In the most extreme cases of
dynamic metamorphism the fesultant crushed mgterial may be
fused to produce a vitrified rock referred to as a pseudotachylite.

Metamorphic rocks outcropping over hundreds or thousands
of square kilometrés are found in the pre-Cambrian shields and
the eroded roots of fold mountains. As a consequence the term
regional has been applied to this type of metamorphism.
Regional metamorphism involves both the processes of changing
temperature and stress. The principal factor is temperature, of
which the maximum figure concerned in regional metamorphism
is probably around 800°C. Regional metamorphism can be
regarded as taking place when the confining pressures are.in
excess of three kilobars, whilst below that figure, certainly below
two kilobars, falls within the field of contact metamorphism.
What is more, temperatures and pressures conducive to regional
metamorphism have probably been maintained over millions of

‘years.

Regional metamorphism is a progressive process, that is, in
any given terrain formed initially of rocks of similar composition,
zomes of increasing grade may be defined by different mineral
assemblages. Slates are the product of low-grade regional
metamorphism  of argillaceous' sediments. As -the grade of
metamorphism increases slates give way to phyllites which, in
turn, are replaced by schists. Gneisses are characteristic of high-
grade metamorphism. When sandstones are subjected to
regional metamorphism quartzites, schists or granulite may form
depending on the original composition of the sandstone and
grade of metamorphism. Marblcs, of various types. are produced
when carbonate rocks are metamorphosed. Schists, gneisses and
granulites may be developed fraim igneous rocks.

1.2.2 Metamorphic textures and structures

Most deformed metamorphic rocks possess some kind of
preferred orientation. Preferred orientations arc commonly
exhibited as megascopic linear or planar structures which allow
the rocks to split more easily in one direction than others. One of
the most familiar examples is cleavage in slate and phyllites, a
similar type of structure in metamorphic rocks of higheg grade is
schistosity. Cleavage is independent of any original bedding.
which it normally mtersects at high angles. Where cleavage is
developed in a series of beds of different lithologies. its attitude
changes as it passes from one bed to another. C leavage planes do
not intersect although they may meet or branch. They are always
roughly parallel to each other. Frequently cleavage forms

- parallel to the axial planes of folds, having developed

perpendicular to the direction of maximum principal stress. In
other words. recrystatlization of minerals of platey habit has
occurred in the plane of least stress. Micro-shearing along
individual cleavage planes or in narrow zones. together with
elongation of parts of the rock mass in the direction of the
cleavage. are often present in slates.

Schistosity has been assumed to be developed in a rock when it
was subjected to increased temperature and stress which
involved its reconstitution, which was brought about by
localized solution of mineral material and recrystallization.



