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Preface

Mathematics is a fundamental ingredient of any physical theory. This book
is an introduction to the mathematics behind concrete physical problems,
both in classical and quantum physics. It covers topics treated in mathe-
matics courses in the last years of undergraduate studies in physics: complex
functions, distributions and Fourier analysis, which are widely used in all
fields of physics, and an introduction to the theory of Hilbert spaces, which
is needed for the mathematical foundation of quantum mechanics. The dif-
ferent arguments are organised into two main parts — complex analysis
and vector spaces. This division is meant to stress how seemingly different
mathematical tools used in physics are conceptually related and deeply
interconnected.

In our experience some of these topics are covered in physics pro-
grammes either at an extremely elementary level or at a very mathemati-
cally advanced one. This book originates from lectures given at the Ecole
Normale Superiéure and the Université Pierre et Marie Curie in Paris, the
University of Milano-Bicocca and the University of Rome Tor Vergata, and
takes an intermediate approach. It keeps a rigorous mathematical level,
but it uses examples to illustrate the general theory rather than showing
long and complicated proofs. For the topics that involve advanced func-
tional analysis, like the theory of linear operators in Hilbert spaces, we
have emphasised the physicist point of view in spite of generality, with an

eye to quantum mechanics.
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Each chapter contains fully worked-out exercises. Together with the
examples, they are a central part of the book and illustrate the general
theory. There are about 150 exercises with solutions. They range from very
simple and basic exercises, which the readers are invited to solve by them-
selves, to more difficult or theoretical ones, denoted with a star. The latter
sometimes provide proofs of theorems given in the main text.

This book is appropriate for one semester courses for second or third
year undergraduate physics programmes. It assumes the knowledge of ele-
mentary calculus in one or more real variables and some previous exposure
to elementary algebra., at the level of vectors and matrices. usually covered
in the first years of undergraduate studies.

A companion volume is also available, which covers more advanced top-
ics that are typically taught at Master level. It includes conformal mapping,
asymptotic analysis, integral and differential equations and an introduction
to the mathematical methods of quantum mechanics. It is impossible to
cover in a single book all mathematical methods used in physics with a
satisfactory level of analysis. For this reason, some fundamental topics, like
probability. group theory and differential geometry, are missing both in this
book and its companion.

Michela Petrini is a professor in physics at the University Pierre et Marie
Curie (Sorbonne Université) in Paris. Gianfranco Pradisi is a professor at
the University of Rome Tor Vergata. Alberto Zaffaroni is a professor at
the University of Milano-Bicocca. They all work in high energy physics and

mathematical physics, mainly string theory.
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PART I
Complex Analysis






Holomorphic Functions

The theory of complex functions is one of the most fascinating fields of
analysis and is also an essential tool for theoretical physics. The idea is to
extend to the functions of complex variable properties and theorems valid
for real analysis. In particular, the aim is to define the notion of derivability
and integrability of a function of complex variables. This will lead to the
definition of holomorphic functions. We will discover that differentiability
in complex sense is stronger than in real sense. In particular, functions that
are differentiable once in complex sense are also infinitely differentiable

and analytic.

1.1. Complex Functions

A function of complex variable is a map f : C — C that associates with
each point z of the complex plane C (or a subset of it) one point of the

same plane
z—w= f(z). (1.1)

Since f(z) is a complex number, we introduce its real and #maginary

parts as follows:
f(z)=Ref+ilm[f=X(z.y)+iY (z.y). (1.2)

where = = x+iy, and X (z.y) and Y (x.y) are real functions of the two real

variables (r.y).
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A first notion one can introduce is continuity. A function [(z) is con-

tinuous at a point z if it is defined in a neighbourhood of =z and if

lim f(z) = f(20)- (1.3)

The limit is defined in analogy with the case of a function of one real
variable: [(zy) is the limit of f(z) for = — z; if, for any ¢ > 0, there exists

6 > 0 such that
lz—z0]<d = |f(z)= f(=0)| <e (1.4)

Note however that we are taking the limit in a plane. Thus, as for functions
of several real variables, the limit must be independent of the path chosen

to approach 2.

Example 1.1. The limit

liII(l - (1.5)
z—0 Z

does not exist, since it depends on the path in the complex plane chosen
to approach z = 0. For instance, if we approach z = 0 along the real axis,
z = z = x, while along the imaginary axis = = —= = iy. Thus, the limits

take different values

~T21, Gm-o=—Y=_1. (1.6)
r y—0 2 iy

lim

x—0

o |y

From (1.2), it follows that, it a function f(z) is continuous at z, =
2o +iyg, its real and imaginary parts are also continuous at the point (xg. yo)
of R?. Similarly, one can show that the modulus of f, |f| = VX? + Y72, is

also continuous at = = z,. Moreover, if the functions f(z) and g(z) are
continuous at = = z(, and h is continuous in ¢(z;), then

f(z) £9(2). [(2)g(z). (ifg(z0) # 0).  h(g(z)) (1.7)

=

9(=)
are also continuous at = = z.

Given the notion of continuity at a point, one can extend it to continuity
on a region of the complex plane. Let us first define a domain of the complex
plane as an open, connected region of C. A function f(z) is said to be
continuous on a domain ) C C if it is continuous at each point of the

domain. All the properties mentioned above hold on D.
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Given a function [ : DD — C that associates to any =z € D a value

w = [(z), one can define its tnwverse as

L (D)= DcC

w—z= " w).

Strictly speaking, only injective functions admit an inverse. In complex
analysis it is sometimes useful to define the inverse also for non-injective
functions, but, in this case, f~!(w) is not a function in the proper sense,
since it associates multiple values of » to a single value w. With an abuse of
language, we call them multi-valued functions. We will see many examples

of multi-valued functions in Sections 1.3.2 and 1.5.

1.2. Holomorphic Functions

Another important notion we want to introduce is differentiability. We will
see that, on the complex plane, differentiability imposes strong constraints
on the functions and that, as a consequence, differentiable functions have

very interesting properties.

1.2.1. Derivative of a complex function

The derivative of a complex function is defined in the same way as the
derivative of a real one. Consider a complex function [ that is continuous
at the point z,. The function f(z) is differentiable at the point z; if the
limit

j(zz _f(:’“) (18)

exists. We call this limit derivative of f in zy. We will also use the nota-
tion f'(z0). From the definition of limit, it follows that the result must be
independent of the path in the complex plane along which = goes to z. It
is important to stress that a differentiable function is also continuous, but
that the opposite is not always true.

A function f(z) is differentiable on a domain D if it is differentiable at

all points of . A function that is differentiable on a domain D is said to be



