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PREFACE

The hypergeometric probability distribution is not an easy functlon to
" compute, since reasonably accurate computation involves extensive factorial
expansion with laborious calculations. For this reason, the function has
usually been approximated by means of binomial, Poisson, and normal
distributions. : ‘

In connection with another project, it was decided to undertake the
programming and calculation of the hypergeometric distribution functien for
various sample and lot sizes. The sample and lot values were chosen té
provide exact (six-decimal-place) point and cumulative probability values in®
the ranges where most sampling is done and where the usual approximations
are’ poor,

The material presented here should be useful in many dlfferent disciplines.
Research workers in the physical sciences and engineering, in industrial
management, and in the social sciences, in particular, should find many
applications of the distribution-free statistics whose probabilities can now be
evaluated from these tables. Several of these statistics, including those
based upon 2 x 2 tables and the number of exceedances, are discussed in the
Introduction.

The ‘mathematician and the statistician will find the equivalence of various
sums of combinatorials of special interest. The results are similar to the
well-known equivalence of the cumulative distribution of the negative binomial
to the cumulative distribution of an ordinary binomial distribution. Shown
for the first time, we believe, is the equivalence of the work on the
hypergeometric distribution, per se, and the work on exceedance theory.

One author (G.J.L.) was partially supported in this study by the Office of
Naval Research under Contract No. Nonr 225(53). The other author (D.B.O.)
is at Sandia Corporation, a prime contractor to the United States Atomic
Energy Commission; many of his contributions to this book first appeared
in the form of technical memoranda issued by Sandia Corporation. These
memoranda are listed in the Bibliography.

Drs. G. P. Steck and E. J. Gilbert contributed significantly to the Sandia
Corporation memoranda as co-authors on two of them. Mr, C. M. Williams
and Miss M. K. Weston, both of Sandia Corporation, programmed the com-
putations of the logarithms of factorials and of the hypergeometric probability
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distribution, respectively. Mrs. Marjorie E. Endres of Sandia Corporation -
made spot checks of the tables for accuracy and completeness. Miss Anna

Glinski of Stanford University made some calculations on the approximations

to the hypergeometric distribution. The authors are indebted to all of these

persons for their help, although full responsibility for the accuracy of the

results presented here rests with the authors.

G. J. LIEBERMAN
: D. B. Owen
Stanford, California
Albuguerque, New Mexico
December 1960
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THE HYPERGEOMETRIC PROBABILITY DISTRIBUTION

1. INTRODUCTION -

1.1 The Hypergeometric Probability Distribution

Tabulations of the hypergeometric prebability distribution have many
potentially useful applications, some of which are not generally recognized
as having any connection with the distribution. In Part I of this book we
have attempted to present the theory and rationale of the hypergeometric
probability distribution and to indicate as many of its specific applications
as possible.

1.2 Definitions

The nomenclature of sampling inspecvtion (one of the applications) is “con-
venient to describe the parameters of the hypergeometric probability dis-
tribution and will be used here. The following symbols are defined®

N = number of items in a lot,

n = number of items in a sample taken from the lot,
k = number of defective items in the lot,

x = number of defective items observed in the sample.

Then the probability
Pr {Exactly x defectives are found in the sample}
= p(x) = p(N, n, k, %)
_ ~kin! (N — VN —n)!
Tk—0m—xx NIN—k—n+ 2!’

where x is an integer such that max’[0,7+ 2 — N] < x < min [n, k], and

Pr {x defectives or fewer are found in the sample}
=P(x)=P(N,n,k, x)
. 2’3 kin! . (N — (N — n)!
T temaxfinsk-m B— Dl — i NI(N—k—n+ i)

1.3 Calculation of the Tables

Included at the end of the hypergeometric tables is a table of log N! for
N = 1(1)2000 taken from [50]. This table was put on magnetic tape (all 15
decimal places for each N) and a program was prepared for an IBM 704
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4 THE HYPERGEOMETRIC PROBABILITY DISTRIBUTION

computer to sum the proper logarithms to give the logarithms of the point
probabilities to 15 decimal places. The point probabilitie4 were obtained by
taking antilogarithms correct to at least eight decimal places; usually nine
decimal places were obtained. The cumulative probabilities were calculated
by summing the point probabilities. The results were rounded off to six
decimal places within the IBM 704 computer and printed. The tables given
here were produced by photographic means from this qutput.

As a check on the accuracy of the tables we made calculations on desk
calculators of randomly selected values from each set of 200. We found no
discrepancies. The cumulative probabilities were checked to see that for
each set of values N, n, 2 there was an entry equal to 1 for x =% and
N <100. For N > 100, a check was made for

P(N, 3N,k 3}k ~1) =%,

where N is even and k% is odd.

1.4 Symmetries and Check

Since n and %2 may be interchanged in either of the probabilities P(x) and
Mx) without changing the values of the probabilities, it is necessary to
tabu‘late only for k< n. If n <k, it is necessary only to mterchange n and
k to read the probabilities directly from the tables.

This volume tabulates the hypergeometric distribution for N = 1(1)49,
50(10)100, and 1000. The values for N = 1000 are given only for n = 500.
Some values for N == 100(100)2000 are also given.

All possible hypergeometric probabilitity distributions with N < 25 are
tabulated below, and the only symmetry that may have to be used in enter-
ing the table is the one on » and %2 mentioned above.

For N > 25, three additional symmetries were taken into account in order
to keep the table to a reasonable size. These symmetries are given by the
following equations. For point probabilities,

p(Nnkx) PN, n,N—k,n—x)
=pN,N—n,k k—x
=pINNN—, N—kN—n—-Fk+x);
and for cumulative probabilities, ‘
P(N,n,k,x)=P(N,N—n,N—k,N—n—k+x)
=1—-PWN.a,N—k,n—x-1)
=1—-P(NN—nkk—x-1,
where the value of P(N, n, k, x) is 1 if either n — x — 1 or k — x — 1 becomes
negative. These three symmetries are immediately obvious if one considers
the effect of interchanging the roles of defective and nondefective, and if
one keeps in mind also that » and % can always be interchanged. They

may be proved formally by substituting in the defining equations for
KN,n, k, x) and P(N,n, k, x) and showing that the resulting factorials and
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TABLE I
N T m k z P(z) pl)
Set I . ,

‘16 6 4 0 0.115385 0.115385
16 6 4 1 0.510989 0.395604
16 6 4 2 * 0.881868 0.370879
16 6 4 3 0.991758 0.109890
16 6 4 4 . 1.000000 0.008242
' Set II
16 10 4 0 0.008242 0.008242
16 10 4. 1 0.118132 0.109890

.16 10 4. 2 0.489011 - 0.370879
16 . 10 4 3 0.884615 0.395604
16 10 4 4 1.000000 0.115385

‘ _ Set III : ,

16 12 6 2 0.008242 0.008242
16 A2 6 3 0.118132 - 0.109890
16 ' 6 4 0.489011 0.370879
16 12 6 5 0.884615 0.395604 <
16 12 6 6 1.000000 0.115385

. ' _ . Set IV -

16 12 10 6 £ 0.115385 0.115385
16 12 10 7 0.510989 ’ 0.395604
6 . 12 10 8 0.881868 0.370879
1 12 0 - 9 0.991758 0.109890
16 12 10 10

1.000000 0.008242

sums of factorials are equal The symmetry involving n and % may be
written : : ‘

N, n, k, %) = BN, k,n, :E) ‘and PN,k x)= PN, k;n, ) .

The usefulness of this symmetry cannot be overemphasized and should
always be kept in mind when dealing thh the hypergeometrlc probabllxty
distribution.

As an example of the usefulness of the three symmetrles mentloned above,
consider the four sets of equivalert entries given in Table I. Clearly, when
one of the sets of values is given, it will be easy to obtain the other three.
These symmetries were used in producing the table for N > 25 in order to
reduce the number of entries. This involved restricting the parameters so
that x < k< n < #N. These restrictions eliminated practically all of the
duplications, the exceptions being values such that N is even and » = N,
where the distributions themselves are symmetric about x = #k. In this
connection, for N even, n =4%N, k odd, and x=4(k —1), the value of
P(N,n,k, x) is 3. This computation was found to be a useful and quick
check on parts of the tables. Another useful and quick check on the tables

@ -



6 THE HYPERGEOMETRIC PROBABILITY DISTRIBUTION

is given by

3 P(x)=1+k(1—i-), fornzk.
z=max [0.m+x-N) N

The tables give all possible hypergeometric probab_ili'ty distributions for
N=25. For 25 < N<50 all possible distributions are given except that
one of the set of three symmetries may have to ‘be used to find the proper
table entry. For N = 60(10)100 all values also are given except that one of
the set of three symmetries may have to be used. For N = 1000, n = 500,
all distributions are given except that point probabilities equal to 0 to six
decimal places (0.000000) are not explicitly given and one of the set of three
symmetries may have to be used. A table of probabil;ties is also given for
N = 100(100)2000, n = 4N and k=5 — 1, n, and all values of x.

As an example of the use of the symmetries in looking up probabilities
in the table, consider the problem of finding P(50, 40, 30, 20). "The tli=e
equivalent values of the parameters are ’

PN N—n,N—k N—n—k+ x)= P(50, 10, 20, 0) ,
1-PWN,n,N—Fk,n—x—1)=1— P(50, 40, 20, 19) ,
. 1-P(NNN—nkk—x—1)=1-P(50,10,30,9).

The value that can be found in the table is the one with # < 4N and
k < n. Therefore the appropriate value given in the table is P(50, 20, 10, 0) =
0.002925. Note the interchange of # and .. Hence we find P(50, 40, 30, 20) =
0.002925. :

As a second example, suppose the value of P(1000, 565, 500, 287) is needed.
Note that this can be obtained from the tables, since 7 and % can be inter-
changed and the tables include all values of N = 1000, #» = 500 which are.
greater than 0 to six decimal places and less than 1. The equivalent values
are P(1000, 435, 500, 222), 1 — P(1000, 565, 500, 277), and 1— P(1000, 435, 500,
212). Now the value sought may be obtained from 1 — P (1000, 500, 435, 212)=
1 —-0.261791. Hence we have P(1000, 565, 500, 287) = 0.738209.

1.5 Number of Entries in the Tables

If only the symmetry given by the interchangeability of » and k is taken
into account, then the number of entries in a table of the hypergeometric
distribution beginning with N =2 is given by ]

- s r _JOif N is even
N*+12N® + 2N* — 12N {3 o o
48

If all entries such that 0 < x <k < #n < 3N are tabulate_d beginning with
N =2 up to N = N, the number of entries for even v_alues of N is

S =

s* — i%uva\m 2)(N* + 14N + 16)] .

and for odd values of N,



APPLICATIONS 7
S* = é[uv— DV + DN + 3)(NV + 13)] .

Thus for the tables given here, the number of entries for N<25 is S=
12,064; the number of entries from 26 = N < 50 is S* = 43,550 — 3,458 =
40,092. Similarly, the number of entries for N = 60, 70, 80, 90, and 100 can
be computed, and for these values of N the number of entries is 66,750.
Through N =100, the total number of entries in the tables given here is
then 118,906 entries. Since zero entries were eliminated for N = 1000,
# =500, and for N =.100(100)2000, » = %N and k== —1, », it was not
possible to predict the number of entries for these cases. There were,
however, 15,433 entries for N = 1000, n = 500 and 1535 entries for the cases
covered with N = 100(100)2000, giving a grand total of 135,874 entries in the
hypergeometric tables given here.

2. APPLICATIONS
2.1 Applications o a Sequential Procedure

Given a lot of N items containing % defectives, a question that frequently
arises is “How many items must be sampled from the lot to produce #
nondefectives?” The solution to this problem may be obtained as follows:

Pr {x + n trials or fewer will be required to produce » nondefectives}

N =BI N =T k an+1) k(k — 1)
=S W=k=mN TNt T 2 WeowmW—a=D T
MECES RGP T) k=1 (k—x+1) ]
YL WN—n)N—n—-1)---(N—n—x+1)

[ DCNECT N

[YCEC TN,

where 0 < x<kand Nz k+n.
It can be shown that this probability reduces to

1_P(er+n)N°—k:n_1).=P(N’n+xsk)x)

by the following argument. Let N, be the number of trials until #» non-
defectives first appear. Let y» be the number of nondefectives in 4 trials.
Suppose there are fewer than » nondefectives in the first & trials. Then
more than 4 trials will be required to obtain »# nondefectives. . Also, if the
number of trials needed to obtain » nondefectives is larger than %, then in
the first 4 trials there will be fewer than # nondefectives. Since N, > &
for exactly the same sequences for which y. < n, it follows that N, < 4 for
exactly the same sequences for which y, = ».
Thus, we obtain
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Pr{N, < h} =Pr{y =z n}
=1—P(N,x+n,N—Fkn-—1)
=P(Nln+xlklx)'

This proves the identity

CECDOTST)=EGEL0):

which is a generalization of the identity (12.16) in Feller [16]
For example, suppose a lot of 50 items contains 10 _defectives and it is -

- necessary to obtain 20 ndndefective itemis from the lot. The sampling will

stop when the 20 nondefectives are obtained. What is the probability that .
the 20 nondefective items can be obtained with a sample of 25 or fewer?
‘The answer is P(50, 25, 10, 5) = 0.637399.

The entire probability distribution for the possible sample sizes may be
obtained from the hypergeometric table also. The distribution is given in
Table II. Hence, for example, about 66 times out of 1000 it will be necessary
to take a sample of 28 or more to obtain 20 nondefectives from the lot.

TABLE II
Sample size Look up
20 P(50, 20, 10, 0) = 0.002925
21 P50, 21, 10, 1) =0.022424

P50, 22, 10, 2) = 0.085964
P(50, 23, 10, 3) = 0.21909
P50, 24, 10, 4) = 0.417561
P(50, 25, 10, 5) = 0.637309 _
P(50, 26, 10, 6) = 0.820598
P(50, 27, 10, 7) = 0.934006
P(50, 28, 10, 8) = 0.983930
P(50, 29, 10, 9) = 0.998051
P(50, 30, 10, 10) = 1.000000

EVBIRKRBY

As a second example, suppose a lot of 35 items is at hand, and it is
necessary to obtain 20 nondefectives from this lot before sampling can cease.

~ When sampling is stopped, it is necessary to make a statement about the

number of defectives in the original lot, e.g., that the number of defectives
in the lot is no more than k£ with 90 per cent assurance. '

This problem may be solved by solving the inequality P(35, x + 20,%,x) =
0.10 for k. The results are shown in Table III. Now, for example, it can
be said that if sampling stopped with a sample of 25 items to produce 20
nondefective items, one is at least 90 per cent Sure that there were no more
than 10 defective items in the lot before sampling; or equivalently, one is
90 per cent sure that there are no more than 5 defective items in the remain-
ing 10 items.
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TABLE Il
Sample size taken T k Actual probability
20 "o 3 - 0.070
21 1 5 0.071
22 2 7 0.050
23 3 8 0.070
24 4 9 0.084
25 5 10 0.089
26 6 11 0.084
27 7 12 0.070
28 8 13 0.050
29 9 14 0.028
30 10 14 0.070
31 11 15 0.026
32 12 15 0.070

It might be instructive to compare this case with the case of an infinite
lot. Suppose a sample of 25 is taken from a continuous production process
to produce 20 nondefective items. With 90 per cent assurance, what is the
upper bound on the proportion of defective items coming from this process?*

The answer is obtained by computing the following upper confidence limit -
on a proportion where sampling is from a negative binomial distribution:

n+1

1- n + 1+ xFy 22042

where Fy is an upper r percentage point of the F distribution based on 2x
degrees of freedom for the numerator and 2n + 2 degrees of freedom for
the denominator. Here 2 = 20 and x = 5; hence Fy.0 = 1.75 and the upper
bound on the proportion of defectives produced by the process is 1 — 0.706 =
0.294 with 90 per cent assurance. For the finite lot with N = 35, as pointed
out above, the proportion of defectives in the original lot is less than
10/35 = 0.286 with at least 90 per cent assurance, or the proportion of
defectives in the remaining part of the lot is less than 5/10 = 0.500 with
at least 90 per cent assurance.

2.2 Applications to Tests of the Equality of Two Proportions
(2 x 2 Tables)

A 2 x 2 contingency table is represented below.

Characteristic 11 Characteristic I Totals
Has Does not have
Has ' x k—=x k
Does not have n—z N-n—k+z N-k
n N-n N

The analysis considered here of this type of table is due to Fisher t19],
p. 85; various probability tables have been prepared for easy application of
the method [17], [18)], [33], [37], and [62]. ’
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An example will make clear the usefulness of the hypergeometric table in
testing a 2 x 2 table. We wish to evaluate two methods of encapsulating
small batteries in plastic. The data are presented as follows:

Treatment Performance Totals
Failure Success
Encapsulation Method I 9 6 15
. Encapsulation Method 1I 3 11 14
12 a7 29

Hence, take # =12, k=15, x =9, and N=29. But in order to read this
from the hypergeometric table, it is necessary to interchange k and » and
to make use of the symmetry P(N,n,k,x)=1— P(N,N—n, ke—x—1).
Entries' are now taken from the main table as given in Table IV.

TABLE 1V

N n k z P(x) p(x)

29 15 12 0 0.000002 0.000002
29 15 12 1 0.000107 0.000105
29 15 12 2 - 0.002132 0.002025
29 15 12 3 0.019685 0.017553
29 15 12 4 0.098672 0.078987
29 15 12 5 0.297267 0.198595
29 15 12 6 0.586885 0.289618
29 15 12 7 0.835130 0.248244
29 15 12 8 0.959252 0.124122
29 15 12 9 0.994357 0.035105
29 15 12 10 0.999623 0.005266
29 15 12 11 0.999991 0.000368
29 15 12 12 1.000000 0.000009

P

The question to be answered is “Does Method II have a better effect on
performance than Method I?” This is a one-sided test since the outcome is
interesting only if Method II is better than Method I. The relative propor-
tion of successes using Method II is 11/14 = 0.79 and for Method I is 6/15 =
0.40. Hence, in this sample Method II shows a better performance than
Method I. The question now becomes “Is this due to chance or is Method
II really better than Method I?” Next, the statistical test will be performed
to determine if Method II is indeed better than Method 1. If Method II
were worse than Method I in the sample, then no further statistical test
would be performed because the hypothesis that Method II is no better
than Method I is automatically accepted. Note that the procedure outlined
above enables one to make a one-tailed test. For a two-tailed test no
preliminary leok at the proportions is necessary.

The probability of observing exactly nine failures is then p(x) = 0.035105.
But it is necessary to find the probability of nine or more failures (a devia-
tion as extreme as, or more extreme than, the one observed), and this can
be obtained from the table by taking

1—Pr{x=<8}=1-—0.959252 = 0.040748 .
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Since this probability is less than 0.05, there is a significant difference be-
tween Method I and Method II at the 95 per cent level of significance.

If in the problem solved above there were no prior understanding that
the outcome would be interesting only if Method II were better than Method
I, then a two-sided test should . be run. Looking at Table IV, one should
say there is a significant difference at the 95 per cent level of significance
only if x =3 or if x = 10, since

Pr{x = 3} + Pr{x 2'10} = 0.019685 + 1 — 0.994357
= 0.025328 < 0.05 .

Table IV shows that x cannot be rajsed to 4, since then P(x) 0098672
But x could be lowered to 9 at the upper end if x were lowered. to 2 at the
lower end. That is, another two-sided rule for determining significance at
the 95 per cent significance level is to donclude that Method 1 differs from
Method II if x <2 or if x = 9, since

Pr{x <2} + Pr{x 2 9} = 0.002132 + 1 — 0.959252 -
= 0.042881 <'0.05 .

Both rules, x<3 or x210 and x<2 or xx9, are equally good. The.
second might be preferred to the first on the ‘ground that the actual test
probability is closer to 0.05. The first might be preferred to the second on
the ground that both tails of the distribution are below 0.025. The dxfﬁculty,
of course, arises because of the discreteness of x. For further discussion
of this point as applied to the above problem see [62].

2.3 Applications to the Distribution of the Number of Exceedances

Consider a random sample of size # taken from a continuous distribution.
Let another random sample of size m, independent of the first sample, be
drawn from the same population. The probability that x observations among
the observations of the second sample will exceed the rth- largest observa- °
tion in the first sample is given by

Pr {x among m future trials will exceed the rth-largest
observation in a sample of %}
_ m+n—r—x x+r—1 m+n
- ( n—r r—1 / (

”n
= m+np(m+n—1,m,x+r—1,x)

where p(m + n, m, x + r, x) is the quantity defined in Section 1.2 and is equal
to p(x) in the hypergeometric table.
The probability that the'largest among » past observations will be exceeded
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at most x times in m future trials is given by

Pr {x or fewer among m future trials will excéed
the largest among »n observations}

2 fm+n—y—1\//m+n mi+n—1—x\//m+n
7= n—1 n n n
The summation of the binomial coefficients was accomphshed by means of
Eqiation (12.6) of [16] Hence,

Pr{x pr fewer among m future trials will exceed
the largest among = observations}
=1—Pm+n,nx+1,0), for0sx<sm,
and
Pr {x or more among m future trials will exceed
the largest among # observations}
" =P(m+n,n,zx0), for0<x=m.
Also,

Pr {x or fewer among m future trials will exceed
the smallest observation in a sample of »n}

_ i(y+xn—1>/(m+n) =(n+x)/(m+n)

=\ n-—1 n n n )
The summation of the binomial coefficients was accomplished by means of
Equation (12.8) of [16]. Then,

Pr{x or fewer axilong m future trials will exceed
the smallest observation in a sample of »}
=P(m‘+n,n,m-—x',‘0), for0sx=m.

In general,

Pr {x or more among m future trials will exceed
the rth-largest among n observations}

z(m+n—r— y+r—1)/m+n
=) n—r r—1
=Pm+nnzx+r—1r—1), forl=r=sn.
(See Section 2.1 for a proof of the equivalence of these sums.)
If » =1, the formula for the probability that x or more among m future

trials will exceed the largest among #n observations is obtained.
Also, if r = n,

Pr{x or more among m future trials will exceed
the smallest among z observations} :
=Pm+nnx+n—1,n-1);
or



