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PREFACE

At the 1960 summer meeting of the Mathematical Association of
America it was my privilege to deliver the Earle Raymond Hedrick
lectures. This monograph is an extension of those lectures, many details
having been added that were omitted or mentioned only briefly in the
lectures. The monograph is self-contained. It does not offer a com-
plete survey of the field. In fact the title should perhaps contain some
circumscribing words to suggest the restricted nature of the contents,
but such modifiers have been omitted for the sake of simplicity.

The topics covered are: basic results on homogeneous approximation
of real numbers in Chapter 1; the analogue for complex numbers in
Chapter 4; basic results on non-homogeneous approximation in the real
case in Chapter 2; the analogue for complex numbers in Chapter 5;
fundamental properties of the multiples of an irrational number, for
both the fractional and integral parts, in Chapter 3. ‘Many proofs are
offered here for the first time, although the results themselves are not

novel.

" An attempt has been made, in a section entitled “Further results™ at
the end of each chapter, to provide a bibliographic account of closely
related work. These sections also give the sources from which the proofs
are drawn. Having used the literature freely, I wish to acknowledge
especially the usefulness of the monographs by Cassels (1956) and
Koksma (1936); see the bibliography for detailed references. The
monographs by Cassels (1956).and Mahler (1961) treat many topics not
considered here, such as the elegant work of Roth on the approximation
of algebraic nunibers. The topic of Diophantine approximations is
also treated to some extent in the general texts on number theory,
notably in Hardy and Wright (1960; Chapters 3, 10, 11, 23, 24) and
LeVeque (1956; vol. 1, Chapter 9; vol. 2, Chapter 4).

A unique feature of this monograph is that continued fractions are
not used. . This is a gain in that no space need be given over to their
description, but a loss in that certain refinements appear out of reach
without the continued fraction approach. Another feature of this
monograph is the inclusion of basic results in the complex case, which
are often neglected in favor of the real number discussion. The paral-
lel arguments for the real and complex cases in Chapters 2 and 5 are
given here for the first time. This development of the theory was
rounded out by the Theorem 5.3 of Eggan and Maier, who kindly pro-
vided me with their work prior to its publication.
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NOTATION AND CONVENTIONS

For any real number x:
- [x] denotes the greatest integer < x; that is, [x] is the unique
integer satisfying [x] £ x < [x] + 1.
x|l denotes the absolute value of the difference between x and the
nearest integer; thus |x| = min |x—n|, where the minimum is
" taken over all integers n.
(x) denotes the fractional part of x, namely (x) = x — [x]; this
notation is used only in a few places where it is awkward to write
x — [x]. _
The symbol Z is used to denote the set of all integers.
a|b means that the integer a is a divisor of the integer b.
{u} denotes the sequence u,, Uy, g, - - -.
6 = X (mod 1) means that § — A is an integer.

N, denotes the set of the integer parts of the multiples of «, thus
[OC], [2(1], [3&], e

The triangle inequality, |u + v| £ [u| + [v|, is often used without
reference or allusion.

A set 0, 8, - - -, 0, of real numbers is said to be linearly dependent over
the rational numbers if there exist rational numbers ry, rg, -+, r, not
all zero such that > r,8, = 0. Note that this is equivalent to saying that
there are integers k;, ko, - - -, k, not all zero such that > k0, =0. A
finite set of real numbers is said to be linearly independent over the
rational numbers in case they are not linearly dependent.

Wherever in the text a name appears with a date, such as Koksma
(1935), the reference is to the paper or book of that date as listed in the
bibliography at the end.
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CHAPTER 1
The Approximation of Irrationals by Rationals

1.1. The pigeon-hole principle

Given a real number 8, how closely can it be apprbximatcd by rational
numbers? To make the question more precise, for any given positive
e is there a rational number a/b within ¢ of 8, so that the inequality

< e

a
b-3

is satisfied? The answer is yes because the rational numbers are dense
on the real line. In fact, this establishes that for any real number 6
and any positive ¢ there are infinitely many rational numbers a/b
satisfying the above inequality.

Another way of approaching this problem is to consider all rational
numbers with a fixed denominator b, where b is a positive integer.
The real number 6 can be located between two such rational numbers,
say

¢ c+1
-< ——y
b= b < b
and so we have |8 — ¢/b| < 1/b. In fact, we can write
a 1
1 o lo -3 = 35

by choosing a = ¢ or a = ¢ + 1, whichever is appropriate. The
inequality (1) would be strict, that is to say, equality would be excluded
if 6 were not only real but irrational. We shall confine our attention
to irrational numbers 6 because most of the questions about approxi-
mating rationals by rationals reduce to simple problems in linear
Diophantine equations.

1



2 THE APPROXIMATION OF IRRATIONALS BY RATIONALS

Now by use of the pigeon-hole principle (sometimes called the box
principle) we can improve inequality (1) as in the following theorem.
The pigeon-hole principle states that if » + 1 pigeons are in n holes,
at least one hole will contain at least two pigeons.

THEOREM 1.1.  Given any irrational number 9 and any Dpositive integer
m, there is a positive integer b < m such that
1
168] = 186 — a] < ———-

The symbol a here denotes the integer nearest to b0, so that the
equality |b8)] = |56 — a| holds by the definition of the symbolism.

Proof: Consider the m + 2 real numbers
@ 0, 1, 6 — [6], 20 — [26], ---, m0 ~ [m6]

lying in the closed unit interval. Divide the unit interval into m + 1
subintervals of equal length

3 , J Jj+1

— <

m+1=" " m+1

Since 0 is irrational, each of the numbers (2) except 0 and 1 lies in the
interior of exactly one of the intervals (3). Hence two of the numbers
(2) lie in one of the intervals (3); thus there are integers k,, ks, hy, and h,
such that

j=0’1’2"",m'

l .
m+1

We may presume that m = k, > k, = 0. Defining b = k, — k,,
a = hy — h,, we have established the theorem.

Since (m + 1)=* < b-!, Theorem 1.1 implies that ||b8] < b-2.
Furthermore, this inequality is satisfied by infinitely many positive
integers b for the following reason. Suppose there were only a finite
number of such integers, say b,, b, - - -, b, with

j68l < b7*  for j=1,2,.--,r.

Then choose the integer m so large that

1< bl

(s ~ he) — (ksd ~ )| <
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holds for every j=1,2,..-,r. Then apply Theorem 1.1 with this
value of m, and note that this process yields an integer b such that

168] < <L< bl j=12r

1
m+1
Hence b is different from each of by, by, --+, b,. Also |58} < b~
so there can be no end to the integers satisfying this inequality. The
following corollary states what we have just proved.

COROLLARY 1.2. Given any irrational number 8, there are infinitely
many rational numbers alb, where a and b > 0 are integers, such that

1
<5—2'

a
=%

Note that this result is a considerable improvement over inequality
(1). It is natural to ask whether Corollary 1.2 can alo be improved,
for instance, by the replacement of 1/b3 by 1/b%. It cannot; in fact,
Corollary 1.2 becomes false if 1/b? is replaced by 1/62*¢ for any positive
e. Nevertheless, although the exponent cannot be improved, this
corollary can be strengthened by a constant factor in (4). Specifically

1/b? can be replaced by 1/(V'5b%), and no larger constant can be used
than v/5. This result, due to Hurwitz, is proved in the next section.

@

1.2. The theorem of Hurwity

We first prove a preliminary result about Farey sequences. For
any positive integer n, the Farey sequence F, is the sequence, ordered in
size, of all rational fractions /b in lowest terms with 0 < b = n.  For

example, .
Fpp o ZLzLOL 1112123

Of the many known properties of Farey sequences, only two are
needed for our purposes, as follows.

THEOREM 1.3. If a/b and c|/d are two consecutive terms in F,, then,
presuming alb to be the smaller, bc — ad = 1. Furthermore, if 0 is any
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given irrational number, and if r is any positive integer, then for all n
sufficiently large the two fractions alb and c/d adjacent to @ in F, have
denominators larger than r, that is, b > rand d > r.

Proof: The proof of the first part is by induction on n. If n = 1,
thenb = 1,d = 1,and ¢ = a + 1, so that

~bc—ad=a+1—-a=1.

Next we suppose that the result holds for F,, and prove it for F,.,.
Let a/b and c/d be adjacent fractions in F,. First we note that
b+ d = n + 1, since otherwise the fraction (¢ + ¢)/(b + d), reduced
if necessary, would belong to F,. But this is not possible since

a_atc_c

‘ b " b+d d
Now with respect to F, ., there are two possibilities: first that a/b
and c/d are adjacent, and the second that some fraction or fractions lie
between. In the first case there is nothing to prove because bc — ad = 1
by the induction hypothesis. In the second case, any such fraction,

being in F,,, but not in F,, has denominator n + 1. Denoting the
fraction by k/(n + 1), we write

1 ¢ a ¢ k k a

bd-d b atari i+l h
_ u + v
Tdin+1) " bn+ 1)

whert u=cin+1)—dkz1l,v=0k —a(mr+ 1) 2 1. Our aim is
to establish that u = 1 and v = 1. If on the contraryu > 1 orv > 1
or both, then it follows that

1o 1 .1
bd~ din+1) " bn+1)

n+1>b+d

which is contrary to what was established earlier. Hence ¥ = 1 and
v =1, and so

k 1 ko

a 1
n+l1 dn+1) n+l1 b

bn + 1)

¢
d
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Finally, we observe that at most one fraction can occur between a/b
and ¢/d in F,,,. For if there were another fraction besides k/(n + 1)
it must have the form h/(n + 1). Then the preceding argument implies
that ,

and hence

This completes the proof of the first part of Theorem 1.3.

To prove the second part, let m,, m,, ---, m, denote the integers
nearest to 6, 26, -- -, rf. Choose n sufficiently large so that for every
j=192a""r: )

- <

1 0 — |,
- .

If g is any integer, then foreveryj = 1, 2, -

s Ty

—g.l: l<lo—g.'
J n J

6 — -"—’il =
J
Now the difference between -adjacent fractions in F, does not exceed
1/n, because F, contains all fractions with denominator n, of which
some are perhaps in reduced form. Hence if a/b and c/d are the
fractions adjacent to 8 in F,, we sée that

/6 — my| = |0 — ql,

a fog a 1
. t_f <2
lo 5| <la "5 =n
and
c c a 1
b-ad<la" 8%

A comparison of these with the previous inequalities establishes that
b > rand d > r, and the proof of Theorem 1.3 'is complete.
Another result we shall need is the following,

LemMmA 1.4. There are no positive integers x and y which satisfy
simultaneously the inequalities

w 11 {1 1 1 1 (1 1
® _>_\/_5(x“+ ) and x(x+y)g\7§(?'+(x+y)“)'
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Proof: If there were such integers, then from (5) it would follow that
ng’+y’—\/§xy and 02 (2 — V5)(x? + xy) + y2
Adding these, we get
02 (V5 - Dx - 2
which is false for rational x/y.

We are now in a position to prove a basic result (Hurwitz, 1891).

THEOREM 1.5. Given any irrational number 0 there exist infinitely
many rational numbers hjk in lowest terms such that

v h 1
©6) ia—l—c bt

Furthermore, this inequality is best possible in the sense that the result

becomes false if V'S is replaced by any larger constant.

Proof: Locate 8 between two consecutive fractions of the Farey
sequence F,, say a/b < 0 < c/d with b and d positive. We consider
two cases according to whether @ is greater or less than (a + ¢)/(b + d).
In case § > (a + ¢)/(b + d), we prove that not all three of the inequali-
ties : ‘

_8y 1 g_ake, 1 o 55 1
b= V5p3 b+d~ V5(b+d? d V5dz

can hold. For if we add the first and third of these, and then the second
and third, we get (5) withx = dand y = b.

In the other case, 8 < (a + ¢)/(b + d), we prove that not all three
of the inequalities

0

a 1 a+c¢ 1 ¢ 1
‘“3Evim b+a 'EViprar a4 VAm
can hold.. For if we add the first and third of these, and then the first
and second, we get (5) with x = band y = d.
Hence the inequality (6) holds with h/k replaced by at least one of
a/b, c/d, and (a + ¢)/(b + d). To prove that there are infinitely many
solutions of (6) we argue as follows. Suppose there were only a finite




1.2] THE THEOREM OF HURWITZ 7

number of solutions h/k, and we let r denote the maximum denominator
among these solutions. Then the second part of Theorem 1.3 guaran-
tees that for sufficiently large n the consecutive fractions a/b and c/d
adjacent to 8 in F, have denominators greater than r. This process
then gives a solution h/k to (6) of one of the three forms a/b, c/d, or
(@ + ©)/(b + d). Now a/b and c¢/d are in lowest terms by definition
of Farey sequences. Also (@ + ¢)/b + d) is in lowest terms because

cb+d)—dla+c)=bc~ad=1,

so that any common divisor of a + ¢ and b + d is a divisor of 1.
Thus the solution of (6) so obtained is in lowest terms and its de-
nominator exceeds those of previously obtained solutions.

To complete the proof of the theorem we must show that V5 is the
best possible constant. Before doing that, we rematk on the proof
thus far. The proof that (6) has infinitely many solutions has a slightly
artificial aspect in that the inequalities (5) seem to have no motivating
source. It might appear that some variation on the inequalities (5)
would lead to better results. This is not the case, as we now show by

establishing that the constant V5 in (6) is best possible.
Let 6, and 6, be defined by

1+ V5 1-V3

90= 2 » 61-—— 2

so that
(x —80)(x — 0) =x? —x~1.
For any integers 4 and k, with k > 0, we see that
h
-l

A
-|@) 210
Also 8, = 6, — V5 and so

_ 2 — L2
h Q_al+\/5'=lh hk — k2|

h
k0

v

1
k% e % l

An application of the triangle inequality gives

{lg ~ 6 + vs}.

1 h
@) k—zé ‘E‘oo
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Now if for some positive number B there are infinitely many h,/k,,
j=1,2,3, -, such that

(Ta) hy

k,

_.90

< L
BK?
then k, — oo as j— . Furthermore, from (7) we get

1 1 1
&< (m* Vi)

B<B}c—’,-+\/§,

, 1 -
< lim (2 \/5) = V3.
B s /E?o (.Bkl2 +
- Hence V'3 is the largest possible constant in (6).

Thus the theorem is proved, and we note that the exponent 2 on thé
k? in (6) is best possible. That is, if p-is any fixed real number >2,
and c is any positive constant, there are only finitely many A/k satisfying

h 1
Oo—l—c <L77.

For if not, we could obtain infinitely many A/k satisfying (7a) with, say
B = 3. .
Next we formulate a simple consequence of Theorem 1.5.

COROLLARY 1.6. Given any real numbers a,, ay, by, by with A # 0,
where A = |a,b, — agb,|, and given any positive e, there are infinitely
many pairs of integers h, k such that

A
|alk + b1h|‘|a2k + bzh! < 7-'5- + £,

Proof: If any one of a,, a,, by, by is zero, or if a,/b, or ay/b, is rational,
the result is immediate. - So suppose that a,/b; is irrational. Then
let —a,/b, play the role of 6 in Theorem 1.5 and let A/k be any one of
the rational numbers in that result. Define 8 by

h  a 8

ET5 Tk



