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Preface

Convex Optimization has been recognized as a powerful tool for solving many
science and engineering problems. Over the last two decades, convex optimiza-
tion has been successfully and extensively applied to various problems in sig-
nal processing such as blind source separation (BSS) for biomedical and hyper-
spectral image analysis, and in multiple-input multiple-output (MIMO) wireless
communications and networking, such as coherent/noncoherent detection, trans-
mit/robust/distributed beamforming, and physical-layer secret communications.
Particularly, fourth generation (4G) wireless communication systems have been
in operation, and various researches for fifth generation (5G) systems, e.g., mas-
sive MIMO, millimeter wave wireless communications, full-duplex MIMO, energy
harvesting, and multicell coordinated beamforming, have been intensively stud-
ied and reported in the open literature, where the convex optimization tool is
extensively wielded, validating its central role to the development of 5G systems
and to many interdisciplinary science and engineering applications.

Next, let us address the motivation, organization of the book, suggestions
for instructors, and acknowledgment of writing the book “Conwvex Optimization
for Signal processing and Communication: From Fundamentals to Applications,”
respectively.

Motivation:

Since Spring 2008, I have been teaching the graduate-level course “Optimiza-
tion for Communications”™ at National Tsing Hua University (NTHU), Hsinchu,
Taiwan. As in teaching any other course, I prepared my own lecture notes for this
course. My lecture notes are primarily based on the seminal textbook, Convex
Optimization (by Stephen Boyd and Lieven Vandenberghe), Cambridge Univer-
sity Press, 2004; some research results published in the open literature; and some
materials offered by my former colleague, Prof. Wing-Kin Ma (Chinese Univer-
sity of Hong Kong), who taught this course at NTHU from August 2005 through
July 2007.

From my teaching experience, many engineering students are often at a loss
in abstract mathematics due to lack of tangible linkage between mathematical
theory and applications. Consequently they would gradually lose the motivation
of learning powerful mathematical theory and tools, thereby leading to losing
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momentum to solve research problems by using the mathematics they were trying
to learn. In order to help students to be fully equipped with this powerful tool,
my lecture notes on convex optimization are molded into a bridge from the
fundamental mathematical theory to practical applications. I have assembled
my lecture notes in this book, and sincerely hope that the readers, especially the
student community, will benefit from the materials presented here.

Over the last decade, my lecture notes have been successfully used 12 times
for my intensive 2-week short course “Conver Optimization for Signal Processing
and Communications” at major universities in China, including Shandong Uni-
versity (January 2010), Tsinghua University (August 2010 and August 2012),
Tianjin University (August 2011), Beijing Jiaotong University (July 2013 and
July 2015), University of Electronic Science and Technology of China (Novem-
ber 2013, September 2014, and September 2015), Xiamen University (December
2013), Sun Yat-Sen University (August 2015), and Beijing University of Posts
and Telecommunications (July 2016). These short courses differed from tradi-
tional short courses in conferences, workshops, and symposia (usually using a
set. of synoptic slides without enough details due to limited time). In each short
course I offered in China, I spent around 32 lecture hours over two consccutive
weeks, going through almost all the theories, proofs, illustrative examples, algo-
rithm design and implementation, and some state-of-the-art research applications
in detail, like a guided journey/exploration from fundamental mathematics to
cutting-edge researches and applications rather than pure mathematics. Finally,
a post term project was offered for the attendees to get hands-on experience
of solving some advisable problems afterwards. I have received many positive
feedbacks from the short-course attendees, and now many of them are good at
using convex optimization in solving research problems, leading to many research
breakthroughs and successful applications.

Organization of the book:

With a balance between mathematical theory and applications, this book pro-
vides an introduction to convex optimization from fundamentals to applications.
It is suitable for the first-year graduate course “Conver Optimization” or “Non-
lincar Optimization” for engineering students who need to solve optimization
problems, and meanwhile wish to clearly see the link between mathematics and
applications in hands. Some mathematical prerequisites such as linear algebra,
matrix theory, and calculus are surely much help in reading this book.

The book contains 10 chapters and an appendix, basically written in a causally
sequential fashion; namely, to have in-depth learning in each chapter, one needs
to absorb the materials introduced in early chapters. Chapter 1 provides some
mathematical background materials that will be used in the ensuing chapters.
Chapter 2 introduces convex sets and Chapter 3 introduces convex functions that
are essential to the subsequent introduction of convex problems and problem
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reformulations in Chapter 4, along with many examples in each of the these
chapters.

Some widely known convex optimization problems (or simply termed as convex
problems) are introduced next, including geometric programming (GP) that is
introduced in Chapter 5 (where a geometric program, nonconvex at first glance,
can be easily reformulated into a convex problem); linear programming (LP),
quadratic programming (QP) and quadratically constrained quadratic program-
ming (QCQP) that are introduced in Chapter 6; second-order cone programming
(SOCP) that is introduced in Chapter 7; and semidefinite programming (SDP)
that is introduced in Chapter 8. Each of these chapters presents how the essential
materials (introduced in Chapter 2 to 4) are advisably and effectively applied
to practical problems in communications and/or signal processing. However, we
only present key ideas, philosophies, and major reformulations for solving the
problem under consideration. Some simulation results, also real data experi-
ments (in biomedical and hyperspectral image analysis), are presented for the
readers to visually see the solution accuracy and efficiency of the designed algo-
rithms. Readers can refer to the associated research papers for full details to
ascertain whether he/she can understand/apply the convex optimization theory
comprehensively. Because SDP has been extensively used in wireless communi-
cations and networking, we especially introduce more challenging applications
in Chapter 8, where various intricate optimization problems involving SDP have
been prevalent in the evolution towards 5G.

In Chapter 9, we introduce “duality” which is of paramount importance and
a perfect, complement to Chapters 2 through 4, because some convex problems
can be solved more efficiently by using Karush Kuhn Tucker (KKT) conditions
introduced in Chapter 9, comparing using the optimality conditions introduced
in the early chapters, and vice versa. In our experience, analytical performance
evaluation and complexity analysis of the designed algorithm for solving an
optimization problem is crucial not only to the algorithm design in a perspec-
tive and insightful manner, but also to the future direction/clues for further
research breakthroughs. These analyses can justify and interpret the simulation
and experimental results qualitatively and quantitatively, thereby providing a
concrete foundation for the applicability of the designed algorithm. However,
these analyses heavily rely on the delicate duality theory. On the other hand,
once an optimization problem is reformulated into a convex problem, it can
be readily solved by using off-the-shelf convex solvers, e.g., CVX and SeDuMi,
which are briefly introduced in the Appendix. This may be adequate during
the research stage, but not necessarily suitable for practical applications, where
real-time processing or on-line processing is highly desired or required. Chapter
10 introduces the interior-point method that actually tries to numerically solve
the KKT conditions introduced in Chapter 9, which has been widely used for
the realization of obtaining a solution of a specific convex problem in a more
computationally efficient manner.
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Suggestions for instructors:

For instructors who consider teaching this subject with this book for a one-
semester course, | have a few suggestions based on my years of teaching expe-
rience. First of all, Chapter 1 through 4 can be covered followed by a midterm
examination. Next, some selected applications in Chapter 5 to 8 can be cov-
ered, and then a term project of studying a research paper can be announced.
The purpose of the term project is for students (1 to 2 students as a group)
to experience how a practical problem can be solved by using what they have
learned to verify all the theory, analysis and simulation/experimental results of
the assigned paper. Then the instructor can continue to teach Chapter 9 and
10. Finally, students would take the final examination, followed by an oral pre-
sentation from each term project group. After several implementations myself, 1
found this practice quite inspirational and beneficial to students.

Acknowledgment:

Over the last eight years’ accumulation of my lecture notes, this book was
accomplished through tremendous voluntary efforts from many of my former
students, including my former PhD students, Dr. ArulMurugan Ambikapathi,
Dr. Kun-Yu Wang, Dr. Wei-Chiang Li, and Dr. Chia-Hsiang Lin and my for-
mer Master students, Yi-Lin Chiou, Yu-Shiuan Shen, Tung-Chi Ye and Yu-Ping
Chang who helped draw many figures in the book. I would also like to thank
my former colleague, Prof. Wing-Kin Ma, my former PhD students, Dr. Tsung-
Hui Chang and Dr. Tsung-Han Chan, and former visiting scholar, Dr. Fei Ma,
and former visiting PhD students, Dr. Xiang Chen, Dr. Chao Shen, Dr. Haohao
Qin, Dr. Fei He, Gui-Xian Xu, Kai Zhang, Yang Lu, Christian Weiss, and vis-
iting Master students Lei Li and Ze-Liang Ou, and my PhD student Yao-Rong
Syu and Master student Amin Jalili, and all of my gradnate students who have
offered voluntary assistance, either directly or indirectly.

I would like particularly to express my deep appreciation to those partici-
pants of my short courses offered in the above-mentioned major universities in
Mainland China over the last seven years, for their numerous questions, inter-
actions, and comments that have been taken into account during the writing of
this book, thereby significantly improving the readability of the book, especially
to engineering students and professionals.

This book is also supported by my university over the last two years (2015-
2016). Finally, I would like to thank my wife, Yi-Tel, for her patience and under-
standing during the preparation of the book over the last eight years.

Chong-Yung Chi

National Tsing Hua University, Hsinchu, Taiwan December 2016
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Mathematical Background

1.1

Convex (CVX) optimization is an important class of optimization techniques
that includes least squares and linear programs as special cases, and has been
extensively used in various science and engineering areas. If one can formulate
a practical problem as a convex optimization problem, then actually he (she)
has solved the original problem (for an optimal solution either analytically or
numerically), like least squares (LS) or linear program, (almost) technology. This
chapter provides some essential mathematical basics of vector spaces, norms,
sets, functions, matrices, and linear algebra, etc., in order to smoothly introduce
the CVX optimization theory from fundamentals to applications in each of the
following chapters. It is expected that the CVX optimization theory will be more
straightforward and readily understood and learned.

Mathematical prerequisites

In this section, let us introduce all the notations and abbreviations and some
mathematical preliminaries that will be used in the remainder of the book.
Our notations and abbreviations are standard, following those widely used in
convex optimization for signal processing and comnmunications, that are defined,
respectively, as follows:

Notations:

R, R™, Rm=m Set of real numbers, n-vectors, m X n matrices

C, Ccn, cmxn Set of complex numbers, n-vectors, m X n matrices

R4, R%, R Set of nonnegative real numbers, n-vectors, m X n matrices
Ry, RY,, RIE" Set of positive real numbers, n-vectors, m x n matrices
Z, Ly, Ly Set of integers, nonnegative integers, positive integers
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{z: 3L
x = [.’1,'1,...,.'L'n]l
= (r1,...,Tn)

[x]:

[x]i:;

card(x)
Diag(x)

X =A{zij}pun
— {[X]ij}/wx/v

X+

X"t

XH — (X*)’I'

Re{-}

Im{-}

Xi

Tr(X)

vec(X)

vecdiag(X)

DIAG(X,,..

rank(X)
det(X)
Ai(X)

R(X)
N(X)
dim(V)
-

span(vi, ..., vy]
1'".

* X'I’L)

Set of n x n real symmetric matrices, positive semidefinite
matrices, positive definite matrices

Set of n x n Hermitian matrices, positive semidefinite
matrices, positive definite matrices

The set {xy,...,zn}

'Il-dil'll(‘IlS.i()Il'dl column vector X

ith component of a vector x

A column vector constituted by partial elements of the
vector x, containing [x];, [x]it1, ..., [x];

Cardinality (number of nonzero elements) of a vector x
Diagonal (square) matrix whose ith diagonal element is
the ith element of a vector x

M x N matrix X with the (i, j)th component [X];; = x;;

Complex conjugate of a matrix X

Transpose of a matrix X

Hermitian (i.e., conjugate transpose) of a matrix X

Real part of the argument

Imaginary part of the argument

Pseudo-inverse of a matrix X

Trace of a square matrix X

Column vector formed by sequentially stacking all the
columns of a square matrix X

Column vector whose elements are the diagonal elements
of a square matrix X

Block-diagonal matrix (not necessarily a square matrix),
with X,..., X, as its diagonal blocks, where Xy,..., X,
may not be square matrices

Rank of a matrix X

Determinant of a square matrix X

The ith eigenvalue (or ith principal eigenvalue if specified)
of a real symmetric (or Hermitian) matrix X

Range space of a matrix X

Null space of a matrix X

Dimension of a subspace V

Norm

Subspace spanned by vectors vy, ..., v,
All-one column vector of dimension n



