

From Fundamentals to Applications

Chong-Yung Chi · Wei-Chiang Li · Chia-Hsiang Lin

Convex Optimization for Signal Processing and Communications

From Fundamentals to Applications

Chong-Yung-Chi · Wei-Chiang Li · Chia-Hsiang Lin

CRC Press Taylor & Francis Group 6000 Broken Sound Parkway NW, Suite 300 Boca Raton, FL 33487-2742

© 2017 by Taylor & Francis Group, LLC CRC Press is an imprint of Taylor & Francis Group, an Informa business

No claim to original U.S. Government works

Printed on acid-free paper Version Date: 20161215

International Standard Book Number-13: 978-1-4987-7645-5 (Hardback)

This book contains information obtained from authentic and highly regarded sources. Reasonable efforts have been made to publish reliable data and information, but the author and publisher cannot assume responsibility for the validity of all materials or the consequences of their use. The authors and publishers have attempted to trace the copyright holders of all material reproduced in this publication and apologize to copyright holders if permission to publish in this form has not been obtained. If any copyright material has not been acknowledged please write and let us know so we may rectify in any future reprint.

Except as permitted under U.S. Copyright Law, no part of this book may be reprinted, reproduced, transmitted, or utilized in any form by any electronic, mechanical, or other means, now known or hereafter invented, including photocopying, microfilming, and recording, or in any information storage or retrieval system, without written permission from the publishers.

For permission to photocopy or use material electronically from this work, please access www.copyright.com (http://www.copyright.com/) or contact the Copyright Clearance Center, Inc. (CCC), 222 Rosewood Drive, Danvers, MA 01923, 978-750-8400. CCC is a not-for-profit organization that provides licenses and registration for a variety of users. For organizations that have been granted a photocopy license by the CCC, a separate system of payment has been arranged.

Trademark Notice: Product or corporate names may be trademarks or registered trademarks, and are used only for identification and explanation without intent to infringe.

Visit the Taylor & Francis Web site at http://www.taylorandfrancis.com

and the CRC Press Web site at http://www.crcpress.com

Printed and bound in the United States of America by Edwards Brothers Malloy on sustainably sourced paper

Convex Optimization for Signal Processing and Communications

From Fundamentals to Applications

Preface

Convex Optimization has been recognized as a powerful tool for solving many science and engineering problems. Over the last two decades, convex optimization has been successfully and extensively applied to various problems in signal processing such as blind source separation (BSS) for biomedical and hyperspectral image analysis, and in multiple-input multiple-output (MIMO) wireless communications and networking, such as coherent/noncoherent detection, transmit/robust/distributed beamforming, and physical-layer secret communications. Particularly, fourth generation (4G) wireless communication systems have been in operation, and various researches for fifth generation (5G) systems, e.g., massive MIMO, millimeter wave wireless communications, full-duplex MIMO, energy harvesting, and multicell coordinated beamforming, have been intensively studied and reported in the open literature, where the convex optimization tool is extensively wielded, validating its central role to the development of 5G systems and to many interdisciplinary science and engineering applications.

Next, let us address the motivation, organization of the book, suggestions for instructors, and acknowledgment of writing the book "Convex Optimization for Signal processing and Communication: From Fundamentals to Applications," respectively.

Motivation:

Since Spring 2008, I have been teaching the graduate-level course "Optimization for Communications" at National Tsing Hua University (NTHU), Hsinchu, Taiwan. As in teaching any other course, I prepared my own lecture notes for this course. My lecture notes are primarily based on the seminal textbook, Convex Optimization (by Stephen Boyd and Lieven Vandenberghe), Cambridge University Press, 2004; some research results published in the open literature; and some materials offered by my former colleague, Prof. Wing-Kin Ma (Chinese University of Hong Kong), who taught this course at NTHU from August 2005 through July 2007.

From my teaching experience, many engineering students are often at a loss in abstract mathematics due to lack of tangible linkage between mathematical theory and applications. Consequently they would gradually lose the motivation of learning powerful mathematical theory and tools, thereby leading to losing momentum to solve research problems by using the mathematics they were trying to learn. In order to help students to be fully equipped with this powerful tool, my lecture notes on convex optimization are molded into a bridge from the fundamental mathematical theory to practical applications. I have assembled my lecture notes in this book, and sincerely hope that the readers, especially the student community, will benefit from the materials presented here.

Over the last decade, my lecture notes have been successfully used 12 times for my intensive 2-week short course "Convex Optimization for Signal Processing and Communications" at major universities in China, including Shandong University (January 2010), Tsinghua University (August 2010 and August 2012), Tianjin University (August 2011), Beijing Jiaotong University (July 2013 and July 2015), University of Electronic Science and Technology of China (November 2013, September 2014, and September 2015), Xiamen University (December 2013), Sun Yat-Sen University (August 2015), and Beijing University of Posts and Telecommunications (July 2016). These short courses differed from traditional short courses in conferences, workshops, and symposia (usually using a set of synoptic slides without enough details due to limited time). In each short course I offered in China, I spent around 32 lecture hours over two consecutive weeks, going through almost all the theories, proofs, illustrative examples, algorithm design and implementation, and some state-of-the-art research applications in detail, like a guided journey/exploration from fundamental mathematics to cutting-edge researches and applications rather than pure mathematics. Finally, a post term project was offered for the attendees to get hands-on experience of solving some advisable problems afterwards. I have received many positive feedbacks from the short-course attendees, and now many of them are good at using convex optimization in solving research problems, leading to many research breakthroughs and successful applications.

Organization of the book:

With a balance between mathematical theory and applications, this book provides an introduction to convex optimization from fundamentals to applications. It is suitable for the first-year graduate course "Convex Optimization" or "Nonlinear Optimization" for engineering students who need to solve optimization problems, and meanwhile wish to clearly see the link between mathematics and applications in hands. Some mathematical prerequisites such as linear algebra, matrix theory, and calculus are surely much help in reading this book.

The book contains 10 chapters and an appendix, basically written in a causally sequential fashion; namely, to have in-depth learning in each chapter, one needs to absorb the materials introduced in early chapters. Chapter 1 provides some mathematical background materials that will be used in the ensuing chapters. Chapter 2 introduces convex sets and Chapter 3 introduces convex functions that are essential to the subsequent introduction of convex problems and problem

reformulations in Chapter 4, along with many examples in each of the these chapters.

Some widely known convex optimization problems (or simply termed as convex problems) are introduced next, including geometric programming (GP) that is introduced in Chapter 5 (where a geometric program, nonconvex at first glance, can be easily reformulated into a convex problem); linear programming (LP), quadratic programming (QP) and quadratically constrained quadratic programming (QCQP) that are introduced in Chapter 6; second-order cone programming (SOCP) that is introduced in Chapter 7; and semidefinite programming (SDP) that is introduced in Chapter 8. Each of these chapters presents how the essential materials (introduced in Chapter 2 to 4) are advisably and effectively applied to practical problems in communications and/or signal processing. However, we only present key ideas, philosophies, and major reformulations for solving the problem under consideration. Some simulation results, also real data experiments (in biomedical and hyperspectral image analysis), are presented for the readers to visually see the solution accuracy and efficiency of the designed algorithms. Readers can refer to the associated research papers for full details to ascertain whether he/she can understand/apply the convex optimization theory comprehensively. Because SDP has been extensively used in wireless communications and networking, we especially introduce more challenging applications in Chapter 8, where various intricate optimization problems involving SDP have been prevalent in the evolution towards 5G.

In Chapter 9, we introduce "duality" which is of paramount importance and a perfect complement to Chapters 2 through 4, because some convex problems can be solved more efficiently by using Karush-Kuhn-Tucker (KKT) conditions introduced in Chapter 9, comparing using the optimality conditions introduced in the early chapters, and vice versa. In our experience, analytical performance evaluation and complexity analysis of the designed algorithm for solving an optimization problem is crucial not only to the algorithm design in a perspective and insightful manner, but also to the future direction/clues for further research breakthroughs. These analyses can justify and interpret the simulation and experimental results qualitatively and quantitatively, thereby providing a concrete foundation for the applicability of the designed algorithm. However, these analyses heavily rely on the delicate duality theory. On the other hand, once an optimization problem is reformulated into a convex problem, it can be readily solved by using off-the-shelf convex solvers, e.g., CVX and SeDuMi, which are briefly introduced in the Appendix. This may be adequate during the research stage, but not necessarily suitable for practical applications, where real-time processing or on-line processing is highly desired or required. Chapter 10 introduces the interior-point method that actually tries to numerically solve the KKT conditions introduced in Chapter 9, which has been widely used for the realization of obtaining a solution of a specific convex problem in a more computationally efficient manner.

Suggestions for instructors:

For instructors who consider teaching this subject with this book for a one-semester course, I have a few suggestions based on my years of teaching experience. First of all, Chapter 1 through 4 can be covered followed by a midterm examination. Next, some selected applications in Chapter 5 to 8 can be covered, and then a term project of studying a research paper can be announced. The purpose of the term project is for students (1 to 2 students as a group) to experience how a practical problem can be solved by using what they have learned to verify all the theory, analysis and simulation/experimental results of the assigned paper. Then the instructor can continue to teach Chapter 9 and 10. Finally, students would take the final examination, followed by an oral presentation from each term project group. After several implementations myself, I found this practice quite inspirational and beneficial to students.

Acknowledgment:

Over the last eight years' accumulation of my lecture notes, this book was accomplished through tremendous voluntary efforts from many of my former students, including my former PhD students, Dr. ArulMurugan Ambikapathi, Dr. Kun-Yu Wang, Dr. Wei-Chiang Li, and Dr. Chia-Hsiang Lin and my former Master students, Yi-Lin Chiou, Yu-Shiuan Shen, Tung-Chi Ye and Yu-Ping Chang who helped draw many figures in the book. I would also like to thank my former colleague, Prof. Wing-Kin Ma, my former PhD students, Dr. Tsung-Hui Chang and Dr. Tsung-Han Chan, and former visiting scholar, Dr. Fei Ma, and former visiting PhD students, Dr. Xiang Chen, Dr. Chao Shen, Dr. Haohao Qin, Dr. Fei He, Gui-Xian Xu, Kai Zhang, Yang Lu, Christian Weiss, and visiting Master students Lei Li and Ze-Liang Ou, and my PhD student Yao-Rong Syu and Master student Amin Jalili, and all of my graduate students who have offered voluntary assistance, either directly or indirectly.

I would like particularly to express my deep appreciation to those participants of my short courses offered in the above-mentioned major universities in Mainland China over the last seven years, for their numerous questions, interactions, and comments that have been taken into account during the writing of this book, thereby significantly improving the readability of the book, especially to engineering students and professionals.

This book is also supported by my university over the last two years (2015-2016). Finally, I would like to thank my wife, Yi-Teh, for her patience and understanding during the preparation of the book over the last eight years.

Chong-Yung Chi National Tsing Hua University, Hsinchu, Taiwan

December 2016

Contents

	Pre_{s}	face		» X
1	Mat	themati	ical Background	1
	1.1		ematical prerequisites	1
			Vector norm	5
		1.1.2	Matrix norm	7
		1.1.3	Inner product	8
			Norm ball	9
		1.1.5	Interior point	11
		1.1.6	Complement, scaled sets, and sum of sets	11
		1.1.7	Closure and boundary	12
		1.1.8	Supremum and infimum	13
		1.1.9	Function	15
		1.1.10	Continuity	15
		1.1.11	Derivative and gradient	16
		1.1.12	Hessian	19
		1.1.13	Taylor series	20
	1.2	Linear	algebra revisited	22
		1.2.1	Vector subspace	22
		1.2.2	Range space, null space, and orthogonal projection	22
		1.2.3	Matrix determinant and inverse	24
		1.2.4	Positive definiteness and semidefiniteness	24
		1.2.5	Eigenvalue decomposition	25
		1.2.6	Square root factorization of PSD matrices	27
		1.2.7	Singular value decomposition	28
		1.2.8	Least-squares approximation	30
	1.3	Summ	ary and discussion	31
2	Con	vex Set	ts	35
	2.1	Affine	and convex sets	35
		2.1.1	Lines and line segments	35
		2.1.2	Affine sets and affine hulls	35
		2.1.3	Relative interior and relative boundary	30

		2.1.4	Convex sets and convex hulls	40
		2.1.5	Cones and conic hulls	44
	2.2	Exam	aples of convex sets	46
		2.2.1	Hyperplanes and halfspaces	46
		2.2.2	Euclidean balls and ellipsoids	48
		2.2.3	Polyhedra	50
		2.2.4	Simplexes	51
		2.2.5	Norm cones	54
		2.2.6	Positive semidefinite cones	55
	2.3	Conve	exity preserving operations	55
		2.3.1	Intersection	56
		2.3.2	Affine function	57
		2.3.3	Perspective function and linear-fractional function	61
	2.4	Gener	ralized inequalities	63
		2.4.1	Proper cones and generalized inequalities	63
		2.4.2	Properties of generalized inequalities	64
		2.4.3	Minimum and minimal elements	64
	2.5	Dual	norms and dual cones	66
		2.5.1	Dual norms	66
		2.5.2	Dual cones	73
	2.6	Separ	cating and supporting hyperplanes	78
		2.6.1	Separating hyperplane theorem	78
		2.6.2	Supporting hyperplanes	81
	2.7	Sumn	nary and discussion	84
3	Cor	ıvex Fu	unctions	85
	3.1	Basic	properties and examples of convex functions	85
		3.1.1	Definition and fundamental properties	85
		3.1.2	First-order condition	91
		3.1.3	Second-order condition	95
		3.1.4	Examples	96
		3.1.5	Epigraph	101
		3.1.6	Jensen's inequality	105
	3.2	Conv	exity preserving operations	108
		3.2.1	Nonnegative weighted sum	108
		3.2.2	Composition with affine mapping	108
		3.2.3	Composition (scalar)	109
		3.2.4	Pointwise maximum and supremum	110
		3.2.5	Pointwise minimum and infimum	113
		3.2.6	Perspective of a function	115
	3.3		iconvex functions	117
			Definition and examples	117
		339	Modified Jensen's inequality	122

	2.0
Contents	VII
CUITCITES	

		3.3.3 First-order condition	123
		3.3.4 Second-order condition	125
	3.4	Monotonicity on generalized inequalities	127
	3.5	Convexity on generalized inequalities	129
	3.6	Summary and discussion	133
4	Con	vex Optimization Problems	135
	4.1	Optimization problems in a standard form	136
		4.1.1 Some terminologies	136
		4.1.2 Optimal value and solution	136
		4.1.3 Equivalent problems and feasibility problem	138
	4.2	Convex optimization problems	139
		4.2.1 Global optimality	140
		4.2.2 An optimality criterion	141
	4.3	Equivalent representations and transforms	151
		4.3.1 Equivalent problem: Epigraph form	151
		4.3.2 Equivalent problem: Equality constraint elimination	152
		4.3.3 Equivalent problem: Function transformation	152
		4.3.4 Equivalent problem: Change of variables	156
		4.3.5 Reformulation of complex-variable problems	158
	4.4	Convex problems with generalized inequalities	163
		4.4.1 Convex problems with generalized inequality constraints	163
		4.4.2 Vector optimization	164
	4.5	Quasiconvex optimization	172
	4.6	Block successive upper bound minimization	176
		4.6.1 Stationary point	176
		4.6.2 BSUM	178
	4.7	Successive convex approximation	182
	4.8	Summary and discussion	184
5	Geo	metric Programming	187
	5.1	Some basics	187
	5.2	Geometric program (GP)	188
	5.3	GP in a convex form	188
	5.4	Condensation method	190
		5.4.1 Successive GP approximation	191
		5.4.2 Physical-layer secret communications	193
	5.5	Summary and discussion	193
6	Line	ear Programming and Quadratic Programming	195
	6.1	Linear program (LP)	195
	6.2	Examples using LP	197
		6.2.1 Diet problem	197

		6.2.2 Chebyshev center	197
		6.2.3 ℓ_{∞} -norm approximation	198
		6.2.4 ℓ_1 -norm approximation	199
		6.2.5 Maximization/minimization of matrix determinant	199
	6.3	Applications in blind source separation using LP/convex geometry	200
		6.3.1 nBSS of dependent sources using LP	200
		6.3.2 Hyperspectral unmixing using LP	205
		6.3.3 Hyperspectral unmixing by simplex geometry	210
	6.4	Quadratic program (QP)	223
	6.5	Applications of QP and convex geometry in hyperspectral image ana	Ll-
		ysis	225
		6.5.1 GENE-CH algorithm for endmember number estimation	227
		6.5.2 GENE-AH algorithm for endmember number estimation	229
	6.6	Quadratically constrained QP (QCQP)	232
	6.7	Applications of QP and QCQP in beamformer design	233
		6.7.1 Receive beamforming: Average sidelobe energy minimization	233
		6.7.2 Receive beamforming: Worst-case sidelobe energy minimizatio	n 235
		6.7.3 Transmit beamforming in cognitive radio using QCQP	237
	6.8	Summary and discussion	238
7	Sec	ond-order Cone Programming	241
	7.1	Second-order cone program (SOCP)	241
	7.2	Robust linear program	242
	7.3	Chance constrained linear program	243
	7.4	Robust least-squares approximation	244
	7.5	Robust receive beamforming via SOCP	244
		7.5.1 Minimum-variance beamformer	245
		7.5.2 Robust beamforming via SOCP	246
	7.6	Transmit downlink beamforming via SOCP	248
		7.6.1 Power minimization beamforming	250
		7.6.2 Max-Min-Fair beamforming	251
		7.6.3 Multicell beamforming	252
		7.6.4 Femtocell beamforming	254
	7.7	Summary and discussion	256
8	Sen	nidefinite Programming	257
	8.1	Semidefinite program (SDP)	258
	8.2	QCQP and SOCP as SDP via Schur complement	259
	8.3	S-Procedure	260
	8.4	Applications in combinatorial optimization	262
		8.4.1 Boolean quadratic program (BQP)	262
		8.4.2 Practical example I: MAXCUT	262
		8.4.3 Practical example II: ML MIMO detection	264

		8.4.4 BQP approximation by semidefinite relaxation	265
		8.4.5 Practical example III: Linear fractional SDR (LFSDR) approx	ach
		to noncoherent ML detection of higher-order QAM OSTBC	269
	8.5		274
		8.5.1 Downlink beamforming for broadcasting	274
		8.5.2 Transmit beamforming in cognitive radio	276
		8.5.3 Transmit beamforming in secrecy communication: Artific	cial
		noise (AN) aided approach	276
		8.5.4 Worst-case robust transmit beamforming: Single-cell MISO s	ce-
		nario	281
		8.5.5 Worst-case robust transmit beamforming: Multicell MISO s	ce-
		nario	285
		8.5.6 Outage constrained coordinated beamforming for MISO interf	fer-
		ence channel: Part I (centralized algorithm)	290
		8.5.7 Outage constrained coordinated beamforming for MISO interf	fer-
		ence channel: Part II (efficient algorithms using BSUM)	299
		8.5.8 Outage constrained robust transmit beamforming: Single-o	cell
		MISO scenario	306
		8.5.9 Outage constrained robust transmit beamforming: Multid	cell
		MISO scenario	313
	8.6	Summary and discussion	320
9	Dua	ality	325
		Lagrange dual function and conjugate function	326
	D11	9.1.1 Lagrange dual function	326
		9.1.2 Conjugate function	329
		9.1.3 Relationship between Lagrange dual function and conjug-	
		function	333
	9.2	Lagrange dual problem	334
	9.3	Strong duality	343
	200	9.3.1 Slater's condition	343
		9.3.2 S-Lemma	350
	9.4	Implications of strong duality	353
		9.4.1 Max-min characterization of weak and strong duality	353
		9.4.2 Certificate of suboptimality	354
		9.4.3 Complementary slackness	354
	9.5	Karush-Kuhn-Tucker (KKT) optimality conditions	355
	9.6	Lagrange dual optimization	365
	9.7	Alternating direction method of multipliers (ADMM)	370
	9.8	Duality of problems with generalized inequalities	373
		9.8.1 Lagrange dual and KKT conditions	373
		9.8.2 Lagrange dual of cone program and KKT conditions	376
		9.8.3 Lagrange dual of SDP and KKT conditions	378

	9.9	Theorems of alternatives	384
		9.9.1 Weak alternatives	385
		9.9.2 Strong alternatives	387
		9.9.3 Proof of S-procedure	391
	9.10	Summary and discussion	393
10	Inte	erior-point Methods	395
	10.1	Inequality and equality constrained convex problems	395
	10.2	Newton's method and barrier function	397
		10.2.1 Newton's method for equality constrained problems	397
		10.2.2 Barrier function	400
	10.3	3 Central path	404
	10.4	Barrier method	406
	10.5	Primal-dual interior-point method	409
		10.5.1 Primal-dual search direction	410
		10.5.2 Surrogate duality gap	411
		10.5.3 Primal-dual interior-point algorithm	411
		10.5.4 Primal-dual interior-point method for solving SDP	414
	10.6	Summary and discussion	419
Α	Арр	pendix: Convex Optimization Solvers	421
	A.1	SeDuMi	421
	A.2	CVX	422
	A.3	Finite impulse response (FIR) filter design	423
		A.3.1 Problem formulation	424
		A.3.2 Problem implementation using SeDuMi	425
		A.3.3 Problem implementation using CVX	426
	A.4	Conclusion	427
	Inde	ex	429

1 Mathematical Background

Convex (CVX) optimization is an important class of optimization techniques that includes least squares and linear programs as special cases, and has been extensively used in various science and engineering areas. If one can formulate a practical problem as a convex optimization problem, then actually he (she) has solved the original problem (for an optimal solution either analytically or numerically), like least squares (LS) or linear program, (almost) technology. This chapter provides some essential mathematical basics of vector spaces, norms, sets, functions, matrices, and linear algebra, etc., in order to smoothly introduce the CVX optimization theory from fundamentals to applications in each of the following chapters. It is expected that the CVX optimization theory will be more straightforward and readily understood and learned.

1.1 Mathematical prerequisites

In this section, let us introduce all the notations and abbreviations and some mathematical preliminaries that will be used in the remainder of the book. Our notations and abbreviations are standard, following those widely used in convex optimization for signal processing and communications, that are defined, respectively, as follows:

Notations:

$\mathbb{R}, \mathbb{R}^n, \mathbb{R}^{m \times n}$	Set of real numbers, n -vectors, $m \times n$ matrices
\mathbb{C} , \mathbb{C}^n , $\mathbb{C}^{m \times n}$	Set of complex numbers, n -vectors, $m \times n$ matrices
$\mathbb{R}_+, \mathbb{R}_+^n, \mathbb{R}_+^{m \times n}$	Set of nonnegative real numbers, n -vectors, $m \times n$ matrices
$\mathbb{R}_{++},\mathbb{R}_{++}^n,\mathbb{R}_{++}^{m\times n}$	Set of positive real numbers, n -vectors, $m \times n$ matrices
\mathbb{Z} , \mathbb{Z}_+ , \mathbb{Z}_{++}	Set of integers, nonnegative integers, positive integers

\mathbb{S}^n , \mathbb{S}^n_+ , \mathbb{S}^n_{++}	Set of $n \times n$ real symmetric matrices, positive semidefinite
0 , 0+, 0++	matrices, positive definite matrices
\mathbb{H}^n , \mathbb{H}^n_+ , \mathbb{H}^n_{++}	Set of $n \times n$ Hermitian matrices, positive semidefinite
,	matrices, positive definite matrices
$\{x_i\}_{i=1}^N$	The set $\{x_1,\ldots,x_N\}$
$\mathbf{x} = [x_1, \dots, x_n]^T$ $= (x_1, \dots, x_n)$	n -dimensional column vector ${\bf x}$
$[\mathbf{x}]_i$	i th component of a vector \mathbf{x}
$[\mathbf{x}]_{i:j}$	A column vector constituted by partial elements of the
[] t. j	vector \mathbf{x} , containing $[\mathbf{x}]_i, [\mathbf{x}]_{i+1}, \dots, [\mathbf{x}]_j$
$card(\mathbf{x})$	Cardinality (number of nonzero elements) of a vector \mathbf{x}
Diag(x)	Diagonal (square) matrix whose i th diagonal element is the i th element of a vector \mathbf{x}
$\mathbf{X} = \left\{ x_{ij} \right\}_{M \times N} \\ = \left\{ [\mathbf{X}]_{ij} \right\}_{M \times N}$	$M \times N$ matrix X with the (i, j) th component $[\mathbf{X}]_{ij} = x_{ij}$
\mathbf{X}^*	Complex conjugate of a matrix X
\mathbf{X}^T	Transpose of a matrix X
$\mathbf{X}^H = (\mathbf{X}^*)^T$	Hermitian (i.e., conjugate transpose) of a matrix $\mathbf X$
$\operatorname{Re}\{\cdot\}$	Real part of the argument
$\operatorname{Im}\{\cdot\}$	Imaginary part of the argument
\mathbf{X}^{\dagger}	Pseudo-inverse of a matrix X
$\mathrm{Tr}(\mathbf{X})$	Trace of a square matrix \mathbf{X}
vec(X)	Column vector formed by sequentially stacking all the columns of a square matrix \mathbf{X}
$\operatorname{vecdiag}(\mathbf{X})$	Column vector whose elements are the diagonal elements of a square matrix \mathbf{X}
$\mathrm{DIAG}(\mathbf{X}_1,\ldots,\mathbf{X}_n)$	Block-diagonal matrix (not necessarily a square matrix),
	with $\mathbf{X}_1, \dots, \mathbf{X}_n$ as its diagonal blocks, where $\mathbf{X}_1, \dots, \mathbf{X}_n$
	may not be square matrices
$\operatorname{rank}(\mathbf{X})$	Rank of a matrix X
$\det(\mathbf{X})$	Determinant of a square matrix X
$\lambda_i(\mathbf{X})$	The <i>i</i> th eigenvalue (or <i>i</i> th principal eigenvalue if specified) of a real symmetric (or $Hermitian$) matrix X
$\mathcal{R}(\mathbf{X})$	Range space of a matrix X
$\mathcal{N}(\mathbf{X})$	Null space of a matrix X
$\dim(V)$	Dimension of a subspace V
] ⋅ [Norm
$\mathrm{span}[\mathbf{v}_1,\ldots,\mathbf{v}_n]$	Subspace spanned by vectors $\mathbf{v}_1, \dots, \mathbf{v}_n$
1_n	All-one column vector of dimension n