R & R B ® W

Pattern—Oriented Analysis and Design

Composing Patterns to Design Software Systems

AR TRIE
SRR A ORI TP R it i
S EIhi)

[2] Sherif M. Yacoub
Hany H. Ammar

&

*aftern-Oriented Analysis anc Desig Wik POAD 75i%. R, 31, 8B4 KRGS =
M POAD 77 #1 UML 2 EFRIEFZ AR RS =
BT, R FEARNAESEENE

'fvﬂ'@ﬁi’.%ﬂ

www.infopower.com.cn

pom wm ST AT AT R T T N AR s W AT A S 4 T T T e

R B R BR R W

Pattern—Oriented Analysis and Design

Composing Patterns to Design Software Systems

ElEswigizilicany
A AR R i i
(FEENAR)

IR s

@'f@'@ﬁi’.%d

www.infopower.com.cn

e T O e o Tt AR e L ST T L TRV VAR S W JY O T e o A AR e G [E T Y Wy

Pattern-Oriented Analysis and Design: Composing Patterns to Design Software System (ISBN 0-201-77640-5)
Sherif M. Yacoub, Hany H. Ammar

Copyright © 2004 Addison Wesley, Inc.

Original English Language Edition Published by Addison Wesley, Inc.

All rights reserved.

" Reprinting edition published by PEARSON EDUCATION ASLA LTD and CHINA ELECTRIC POWER PRESS,
- Copyright © 2004,

A5 2B B Pearson Education ¥AU B thiALZE b B (B WIS ST BIX M & X R A1)
ME MR, BAT.
REMICE-BHEFT, AEUEFAT AR HRDERBHETR .

A FHMIEH Pearson Education BithiniE, THnEERBHE.

EETBAREERGRELS BF: 01-2004-2537

For sale and distribution in the People’ s Republic of China exclusively(except Taiwan, Hong Kong SAR and
Macao SAR).

URFHEARINEEN (AEETEES. RIITBXAPEEEHX) HERT.

BRAERGSE (CLP) $U3E

i r AT AT B E BSRAT SR RAEMWRTE /7 () TR (Yacoub, S. M), (F) 5
/R (Ammar, H. H.) . —&0A. —hxE: TEEHKL, 2004

R RBRF)D

ISBN 7-5083-2209-6

L. IL Q. @M. I ®E4§&-%3 IV. TP311.S

P ER A B HE CIP $3RZ T (2004) 3032344 5

A B & BREXAERF
¥ & WERASRAET: B EROREAT R R AN’ GEEIRD
4 % . (%) Sherif M. Yacoub, Hany H. Ammar
TEgE: kSt
HERRAT: TEEHERE
gk AERWZERH6 S HEBRAS: 100044

Ai%: (010) 88515918 £ H: (010) 88518619
B Kl JEREREVRI
FFOA: 787X1092 1/16 B 3. 2475
H# & ISBN 7-5083-2209-6
B ke 200445 BIERE 1R 2004 £ 5 A5 1 IREDRI
€ #r: 39.80m

BB BELLH

To my mother Zienab Halawa, and the memory of my father Mohamed Yacoub
To my sister Noha Yacoub and my brother Yasser Yacoub
To my uncle Samir Halawa
To my professors Hany Ammar and Ali Mili

Sherif Yacoub

To my dear mother Lila Awny, and the memory of my late father Hussein Ammar,
To my wife Mona, my children Kareem, Taher, Hussein, Mariam, and Hoda,
To my sisters Azza and Hala, and to my aunts Ragia and Samiha
To the Engineering Faculty of the International Islamic
University Malaysia, where the background on
Design patterns caught my attention
During my leave at [IUM
In the spring of
1995

Hany Ammar

Preface

The most difficult part of building software is not coding; it is the decisions
you make early at the design level. Those design decisions live with the
system for the rest of its lifetime.

Although this statement might offend many software developers who are strong be-
lievers in coding and implementation, in reality it should not. It is more a compliment
than an insult! How?

We believe that design is a critical phase of the software development lifecycle.
Good design decisions eventually result in a good product, and bad design decisions
generally affect the quality of the final product. But the question is, How do we make a
good design decision, and how can we assess that such a decision is “good” when we do
not have the final product to test our decisions early at the design stage?

Software engineering disciplines realized this paradox a long time ago. The shift
from a waterfall development lifecycle to an iterative and rapid prototype lifecycle is a
solid proof. In any organization, prototyping is a well-appreciated practice. When you do
not know whether your idea is implementable, try to implement a reduced version and
test it. When we do so, we learn things at the late implementation and coding stage that
we were not aware of at the design stage.

Wouldn't it be great to have someone we trust to whom we can explain the prob-
lem and get some useful answers like, such as “I have implemented this before; it does
not work because...” or “I have implemented it before, and this is the way to do it. More-
over, this implementation has these advantages and these drawbacks.”

Design patterns were introduced to serve as the advice from the expert. The real
power behind patterns is that they are abstractions from the real world. Experienced soft-
ware designers and developers have implemented and tested solutions to recurring de-
sign problems. Design patterns capture their experiences and present them to all other
designers in a form that defines what problem is being solved, how it is solved, why the
solution is good, and the implications of using that solution.

Therefore, design patterns are captured by experienced software developers and
designers during implementation of many applications, then documented at the design
phase (possibly with some implementation examples). Other designers then use and de-
ploy these patterns in developing new applications.

XV

Preface

~ The design decisions that we make at the design phase are crucial to the applica-
tion development. We need to make good design decisions. In reality, we cannot make
good design decisions unless we have the experience that enables us to make these de-
cisions. Experienced software developers and designers have this experience, and they
convey it to us in the form of design patterns. Hence, software developers make a major
contribution to the design process by documenting and presenting those patterns in a
form that is usable at the design stage. They make life easier for designers by providing
them with these bulletproof, good design solutions. Whereas we believe that design is a
critical phase in software development, we also believe that experienced developers and
designers have so much to contribute to make the design process a success.

WHAT DO WE REUSE?

Reusing software is one approach to expedite the software development process. The
question is, then, What can we reuse and how? Code is the most common form of reuse.
Before developing a software component, we actively browse the Internet for open source
code that we can borrow, modify, and reuse. Reusing designs is a less frequent practice
than reusing code due to the complexity and difficulty of constructing generic designs and
instantiating them. Moreover, code is more tangible than design, since we can deploy and
execute code with little or no modifications. However, it is very unlikely that we will find
a black box component to satisfy all our requirements. It is also very risky to modify the
source code (if it is available), since this may break the component integrity and the func-
tionality for which it was originally built. Therefore, many software developers prefer to
reuse the idea of the solution and have it implemented their way. Designs are presented

* at higher levels in the form of design models that require further instantiation and im-

plementation. Design patterns help in leveraging the reuse level to the design phase by
providing the design models (and sample implementations) that can be reused.

COMPOSING DESIGN PATTERNS

When we browse existing work and literature on design patterns, we realize that most
of the effort is expended in discovering and documenting patterns, and little work is
concerned with systematically applying these reusable designs in developing new ap-
plications. The problem that deserves more attention is how to compose design patterns
to develop software and how these composition approaches are supported by versatile
design models such as the Unified Modeling Language.

We generally classify approaches to design applications using patterns as follows:

1. Incidental or ad hoc. A design pattern provides a solution together with the forces
and consequences of applying this solution. However, this is not usually sufficient
to systematically develop with patterns. For instance, the coincidental use of a
Strategy pattern in the implementation of a control application is not a systemat-
ic approach to deploy patterns. This is simply because there is no process to guide
the development and to integrate the pattern with other design artifacts. Hence,
the design process is not repeatable.

POAD

Preface xvii

2. Sys‘tematic. A systematic approach to design with patterns goes beyond just ap-
plying a certain pattern. Systematic approaches can be classified as

a. Pattern Languages. A pattern language provides a set of patterns that solve prob-
lems in a specific domain. Pattern languages not only provide the patterns them-
selves but also the relationships between these patterns. They imply the process
to apply the language to completely solve a specific set of design problems.

b. Development processes. A systematic development process defines a pattern
composition approach, analysis and design steps, design models, and tools to
automate the development steps.

We advocate a systematic development processes for developing with patterns,
since this is the only way to make design patterns a common practice in software de-
velopment. To improve the practice of systematically deploying design patterns in de-
veloping software, we need to

 Define composition techniques that can be used to construct applications by com-
posing design patterns, and

* Support these composition techniques with appropriate modeling languages and
views.

While a great deal of research and practice has been devoted to discovering new design
patterns, very little has been concerned with the systematic process of “gluing” and
“composing” design patterns to develop software applications. This book specifically
addresses this problem and provides a practical methodology to compose and deploy de-
sign patterns.

This book presents an approach to design software applications using design pat-
terns. It describes a POAD methodology that produces pattern-oriented designs. POAD
takes a structural composition approach to glue patterns at the high-level design. It uses
the notion of constructional design patterns as design components with interfaces.

POAD is based on the premise that at some design level, it is sufficient to know that
some patterns are used in the application, and it is not necessary to overwhelm the de-
signer with the details of the internal design of each pattern. Wouldn't it be nice to work
at a higher level than class diagrams and yet know that elements at that level have well-
proven class diagrams? This is achieved by POAD. POAD provides logical views to rep-
resent the application design as a composition of patterns and provides the necessary
means to trace participants of those patterns into the application’s final class diagram.

The book provides a briefing of existing design pattern composition approaches
and then describes an example-driven methodology to develop robust software designs
using patterns as their building blocks. The book describes the technological aspects and
the process aspects of the methodology. The technological aspects focus on the models
required to glue design patterns together, and the process aspects walk the designers and
architects through the various analysis and design steps. '

xviii Preface

AUDIENCE

The intended audiences for this book include the following:

1

3.

7.

Software architects and software designers seeking illustrative techniques to de-
ploy patterns in designing software applications. They will learn how to construct

robust, maintainable software architectures using design patterns as their building
blocks.

Practitioners seeking state of the art and practice in applying design patterns and
learning about using pattern catalogs to build software.

Application developers seeking benefits from applying design patterns early at
the design level rather than applying them only at the code level. The case studies
described in the book give hands-on experience in applying design patterns. The
examples in Part IV provide useful illustrations.

Computer science and software engineering students learning about using design
patterns as a good software engineering practice in designing applications. The
case studies help students understand and apply basic design patterns to develop
applications.

Researchers seeking state of the art in pattern composition and an understanding
of related issues that could be topics of future research initjatives. The book helps
researchers unveil the research problems in design pattern composition.

The book helps professors and lecturers in preparing design patterns courses, case
studies, and projects by serving as a reference book for pattern composition ap-
proaches as well as simple and complex case studies.

Reuse managers who want to learn how reusing design patterns can be useful in
building a robust, maintainable software architecture. The book helps organiza-
tion managers in adopting design pattern reuse programs by illustrating an easy-
to-apply methodology that can be used early in the software development process.

Prior Knowledge

The following is the background required for the audience:

Knowledge of the Unified Modeling Language, specifically class and package di-
agram models.

Basic OO design concepts, including inheritance, delegation, aggregation, and so
on.

Knowledge of the basic concepts of design patterns, including what patterns are and
familiarity with some pattern examples from any pattern catalog book.

Scope

This book is not about

Teaching OO design models such as the UML.

» Teaching the basics of design patterns.

Preface xix

¢ Documenting new design patterns.

This book is about

¢ Deploying design patterns in software development.
¢ Composing design patterns.

How to Read the Book

Part I introduces POAD concepts. Chapter 1 is an introduction to the POAD method-
ology. In Chapter 1 we discuss the type of problems that POAD solves. Chapter 2 dis-
cusses the role of patterns in software design. In Chapter 3 we classify design pattern
composition approaches into structural and behavioral composition mechanisms. Chap-
ter 3 elaborates on the behavioral and structural composition approaches respectively
and discusses examples from existing design composition techniques. The chapter con-
tains references to further readings on these composition mechanisms.

Part 11 discusses the technological aspects of POAD. In Chapter 4 we discuss the
role of design patterns as building blocks of software design and which design patterns
can be used with POAD. Chapter 5 introduces the design models that we use to com-
pose design patterns. It also shows how the UML syntactically supports these models.
In Chapter 6 we discuss the UML support for design patterns. We compare different
UML approaches to model design patterns and their composition.

Part 111 discusses the process aspects of POAD. Chapter 7 describes the proce-
dures to apply POAD in the design of software systems. We first discuss the stringing and
overlapping pattern composition approaches, then illustrate how POAD reaps the ben-
efits of the two worlds. This chapter also summarizes the analysis, design, and design-re-
finement phases of POAD and illustrates the overall outline of the process. Chapters 8,
9, and 10 elaborate more on the analysis, design, and design-refinement phases respec-
tively and discuss the development and modeling steps within each phase.

Part IV provides case studies and illustrates the application of the POAD method-
ology to develop pattern-oriented designs and frameworks. We show examples of ap-
plying the methodology to four case studies.

Chapter 11 illustrates the application of POAD in the development of a pattern-
oriented design framework for feedback control systems as an example of reactive sys-
tems. The framework is generic and is easily instantiable in developing
application-specific control systems.

Chapter 12 illustrates the application of POAD in the development of a pattern-
oriented design for the domain of simulation of waiting queues as an example of a prod-
uct line. This framework deals with simulation of customers lining up for service from
one or more service stations, such as the supermarket checkout counter or a self-serve
car wash.

Chapter 13 illustrates the application of POAD in the development of a pattern-
oriented design for the domain of digital-content processing and manipulation. This ap-
plication is used to read, process, and handle digital content where heterogeneous source
and delivery channels are supported, digital media is converted from one format to an-
other, and metadata is extracted.

Preface

Chapter 14 illustrates the application of POAD in the development of a pattern-
oriented design for part of a distributed medical informatics system that is based on the
Digital Imaging and Communication in Medicine (DICOM) standard.

Part V discusses the automation of POAD and wraps up the discussion. Chapter
- 15 discusses the metamodeling support of UML semantics to POAD models. In Chap-
ter 16 we discuss the tool support for applying, modeling, and composing design pat-
terns. Chapter 17 discusses possible future trends that could build on top of the POAD
methodology. Appendix A describes the pattern interfaces for some patterns that are
used in the case studies in Part 4. Appendix B contains a discussion about the state of
the art and practice in design patterns. The glossary provides the collection of terms
used in the book, and finally a large selection of bibliographic information related to
using patterns in software development is presented.

Sherif Yacoub and Hany Ammar
January 2003

Foreword

With the growing demand on rapid software development—to meet time-to-market
needs—software development processes are shifting from the traditional development
starting from scratch to reuse of existing solutions, whenever possible. With increases in
the complexity of software systems, development from scratch has simply become an ob-
solete alternative. The question then becomes: what can we reuse and how can we reuse
it? This book provides an answer to these questions: you can reuse design ideas and
models in terms of design patterns, and you can reuse them in a systematic process called
Pattern-Oriented Analysis and Design (POAD).

Design patterns and application frameworks are two essential technologies in de-
veloping complex software systems that are maintainable and stable (see Building Ap-
plication Frameworks: Object-Oriented Foundations of Framework Design, Fayad et.al.
1999). Although black box component reuse and code reuse are effective techniques,
practical experience shows that design reuse is equally if not more important. Design and
architecture ideas stay with the system for its lifetime and hence an initial stable design
increases chances of building a successful system.

No single pattern is used in isolation! A software system is a composition of mul-
tiple patterns and frameworks that are sometimes domain-specific and sometimes gener-
ic. Over the last decade, hundreds of software design patterns have been extracted from
successful projects and documented. On the other hand, integrating those patterns to-
gether to develop application designs is far from complete. Application designers need
design models that capture pattern compositions; they need systematic processes to
guide them throughout the development process.

POAD is one successful methodology that provides a complete solution for com-
posing design patterns. This book describes the detailed methodology. The key strengths
of this book are:

o Composition models: it uses UML design models—mainly class and package dia-
grams—to illustrate how patterns can be glued together to create a sound design.

o Processes: it describes what the designer needs to accomiplish at each phase—and
hence provides a unique systematic approach to compose design patterns.

* Case studies: it illustrates POAD in action by describing four examples, including
code samples.

xxii

Foreword

The traceability among various designs models at different levels of abstraction—
and linking all byproducts of the composition process—is another key differentiator in
POAD. It is the practicality of the approach and its ease-of-use that makes it viable in
real world application development.

Read carefully, try the examples, and apply them in your application designs. You
will find it rewarding! Enjoy!

MOHAMED FAYAD
Professor, Computer Engineering, San Jose State University
CEOQ, ActiveFrameworks, Inc.

Contents

Preface

Foreword

INTRODUCTION

Pattern-Oriented Analysis and Design

The Role of Patterns in Software Development 3
Purpose of POAD 3

Pattern-Oriented Design Issues 4

POAD Is a Solution 5

What Is Covered in this Book? 6

Design Patterns and Software Engineering

Design Patterns in the Software Lifecycle 7
POAD and OO Technology 8
Design Patterns 10
What Is a Pattern? 10
History of Patterns 11
The Pattern Lifecycle 12
Design Frameworks 14
What Is a Framework? 14
Developing Robust Designs Using Frameworks 15
The Role of Patterns in Developing OO Frameworks 16
Design Pattern Composition Approaches 17
Summary 17

Composition of Design Patterns

Behavioral Composition Techniques 20
Object-Oriented Role Analysis and Software Synthesis 21
Composing Design Patterns Using Roles 25
Architecture Fragments and Superimposition 27

Xv

19

vi Contents

Role/Type/Class Modeling 29
Structural Composition of Design Patterns 32
A Pattern-Oriented Composition Technique 33
Software Composition at the Design Level
using Design Components 34
Component-Based Frameworks Using Patterns 35
The Catalysis Approach 36
Composition Patterns, Subject-Oriented Programming,
and Aspect-Oriented Software Development 38
Further Reading 41

PART Il TECHNOLOGICAL ASPECTS OF POAD

4 Constructional Design Patterns as Components 47

Which Patterns to Use in POAD 47
Software Components 49
A Design Component 50
Constructional Design Patterns 51
Specifying a Pattern as a Component 52
A Recipe 52
Formal Specification 52
Interface Specification 53
Component Interfaces 53
Module Interconnection Languages 53
Interface Definition Language 54
Interfaces for Object-Oriented Components 55
Application/Platform Interfaces 55
Interface Properties 56
Type 56
Role 56
Nature 57
Dynamism 57
Description 57
Multiplicity 57
Pattern Interfaces 58
Summary 60

5 Visual Design Models 61

Pattern Composition Models 61
Pattern-Level Model 63
Schematic Diagram 63
Relationships 64
Design Decisions 63

Contents vii

UML Syntax Support 65
Example 65

Pattern-Level with Interfaces Model 66
Schematic Diagram 66
Relationships 67
Design Decisions 67
UML Syntax Support 67
Example 68

Detailed Pattern-Level Model 68
Schematic Diagram 69
Relationships 69
Design Decisions 70
UML Syntax Support 70
Example 70

Characteristics of the POAD Design Models 71
Hierarchy 71
Traceability 72
Composability 72

Summary 72

6 UML Support for Design Patterns " 73

Patterns as Mechanisms 74
Architectural Patterns 78

Patterns as Packages 79

Patterns and Components 82
Modeling Pattern-Oriented Designs 82
A Comparison 83

Summary 84

PART Iil. PROCESS ASPECTS OF POAD

7 POAD: The Process 87

Stringing Versus Overlapping 87

POAD Process Outline (The Nutshell) 92
Analysis Phase 95
Design Phase 96
Design Refinement Phase 97

POAD and Code Generation 97

POAD Characteristics 99
Pattern-Driven 99
Component-Based Development 99
Architectural Development 100
Library-Driven Development 100

viii Contents

Design Reuse 100
Hierarchical Development 101
Iterative Development 101
Pattern-Oriented Frameworks 102
Pattern-Level Instantiation 102
Class-Level Instantiation 102
Benefits and Limitations 103
Benefits 103
Limitations 104
Summary 104

8 Analysis Phase 105

Overview 105
Requirements Analysis 107
Purpose 107
Process 107
Product 110
Analysis Tips 110
Acquaintance 110
Purpose 110
Process 110
Product 112
Analysis Tips 113
Retrieval 113
Purpose 113
Process 113
Product 116
Analysis Tips 116
Pattern Selection 117
Purpose 117
Process 117
Product 119
Analysis Tips 119
Summary 120

9 Design Phase 121

Overview 121
Constructing Pattern-Level Models 123
Purpose 123
Process 123
Product 126
Design Tips 126
Constructing Pattern-Level with Interfaces Models 126
Purpose 126
Process 127

10

Contents

Product 129
Design Tips 129
Constructing Detailed Pattern-Level Models 130
Purpose 130
Process 130
Product 132
Design Tips 132
Summary 132

Design-Refinement Phase

Overview 135
Instantiating Pattern Internals 137
Purpose 137
Process 137
Product 140
Design-Refinement Tips 140
Developing the Initial Class Diagram 141
Purpose 141 :
Process 141
Product 144
Design-Refinement Tips 144
Design Optimization 145
Purpose 145
Process 145
Product 150
Design-Refinement Tips 150
Using POAD for Developing Frameworks 150
Summary 151

PART IV CASE STUDIES

1

Feedback Control Systems

POAD Analysis for the Feedback Control Framework 156
Requirements Analysis 156
Pattern Selection 158

POAD Design for the Feedback Control Framework 159
Constructing Pattern-Level Diagrams 159
Constructing the Pattern-Level with Interfaces Diagram 160
Constructing Detailed Pattern-Level Diagrams 161

POAD Design Refinement for the Feedback Control Framework 163
Instantiating Pattern Internals 163
Developing an Initial Class Diagram 166
Design Optimization 168

135

155

