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To Shelley



Preface to the Second Edition

I would like to thank all of those who have sent me comments about the first
edition. Those comments have resulted in a number of small changes thfough-
out the text. However, the biggest difference between the first edition and the
second is the addition of more than 200 new exercises. There is also an ap-
pendix containing solutions to selected exercises. Exercises for which solutions
are supplied are marked with an asterisk. In most cases, the solution supplied
is a complete solution; in some cases, it is a sketch of a solution, or a hint.
Some exercises in Chapters 3 and 4 are also marked with the symbol %.
This indicates that these exercises can be solved using Proof Designer. Proof
Designer is computer software that helps the user write outlines of proofs
in elementary set theory, using the methods discussed in this book. Further
information about Proof Designer can be found in an appendix, and at the Proof
Designer Web site: http://www.cs.amherst.edu/~djv/pd/pd.html.



Preface

Students of mathematics and computer science often have trouble the first
time they’re asked to work seriously with mathematical proofs, because they
don’t know the “rules of the game.” What is expected of you if you are asked
to prove something? What distinguishes a correct proof from an incorrect
one? This book is intended to help students learn the answers to these ques-
tions by spelling out the underlying principles involved in the construction of
proofs.

Many students get their first exposure to mathematical proofs in a high
school course on geometry. Unfortunately, students in high school geometry
are usually taught to think of a proof as.a numbered list of statements and
reasons, a view of proofs that is too restrictive to be very useful. There is a
parallel with computer science here that can be instructive. Early programming
languages encouraged a similar restrictive view of computer programs as num-
bered lists of instructions. Now computer scientists have moved away from
such languages and teach programming by using languages that encourage an
approach called “structured programming.” The discussion of proofs in this
book is inspired by the belief that many of the considerations that have led
computer scientists to embrace the structured approach to programming ap-
ply to proof-writing as well. You might say that this book teaches “structured
proving.”

In structured programming, a computer program is constructed, not by listing
instructions one after another, but by combining certain basic structures such
as the if-else construct and do-while loop of the Java programming language.
These structures are combined, not only by listing them one after another, but
also by nesting one within another. For example, a program constructed by
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nesting an if-else construct within a do-while loop would look like this:
do
if [condition]
[List of instructions goes here.]
else
[Alternate list of instructions goes here.]
while [condition]
The indenting in this program outline is not absolutely necessary, but it is a
convenient method often used in computer science to display the underlying
structure of a program.

Mathematical proofs are also constructed by combining certain basic proof
structures. For example, a proof of a statement of the form “if P then O often
uses what might be called the “suppose-until” structure: We suppose that P is
true until we are able to reach the conclusion that Q is true, at which point we
retract this supposition and conclude that the statement “if P then O is true.
Another example is the “for arbitrary x prove” structure: To prove a statement
of the form “for all x, P(x),” we declare x to be an arbitrary object and then
prove P(x). Once we reach the conclusion that P(x) is true we retract the
declaration of x as arbitrary and conclude that the statement “for all x, P(x)”
is true. Furthermore, to prove more complex statements these structures are
often combined, not only by listing one after another, but also by nesting one
within another. For example, to prove a statement of the form “for all x, if P(x)
then Q(x)” we would probably nest a “suppose-until” structure within a “for
arbitrary x prove” structure, getting a proof of this form:

Let x be arbitrary.
Suppose P (x) is true.
[Proof of Q(x) goes here.]
Thus, if P(x) then Q(x).
Thus, for all x, if P(x) then Q(x).
As before, we have used indenting to make the underlying structure of the proof
clear.

Of course, mathematicians don’t ordinarily write their proofs in this indented
form. Our aim in this book is to teach students to write proofs in ordinary
English paragraphs, just as mathematicians do, and not in the indented form.
Nevertheless, our approach is based on the belief that if students are to succeed
at writing such proofs, they must understand the underlying structure that proofs
have. They must learn, for example, that sentences like “Let x be arbitrary” and
“Suppose P are not isolated steps in proofs, but are used to introduce the “for
arbitrary x prove” and “suppose-until” proof structures. It is not uncommon
for beginning students to use these sentences inappropriately in other ways.
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Such mistakes are analogous to the programming error of using a “do” with no
matching “while.”

Note that in our examples, the choice of proof structure is guided by the log-
ical form of the statement being proven. For this reason, the book begins with
elementary logic to familiarize students with the various forms that mathemati-
cal statements take. Chapter 1 discusses logical connectives, and quantifiers are
introduced in Chapter 2. These chapters also present the basics of set theory,
because it is an important subject that is used in the rest of the book (and
throughout mathematics), and also because it serves to illustrate many of the
points of logic discussed in these chapters.

Chapter 3 covers structured proving techniques in a systematic way, running
through the various forms that mathematical statements can take and discussing
the proof structures appropriate for each form. The examples of proofs in this
chapter are for the most part chosen, not for their mathematical content, but for
the proof structures they illustrate. This is especially true early in the chapter,
when only a few proof techniques have been discussed, and as a result many of
the proofs in this part of the chapter are rather trivial. As the chapter progresses
the proofs get more sophisticated and more interesting, mathematically.

Chapters 4 and 5, on relations and functions, serve two purposes. First,
they provide subject matter on which students can practice the proof-writing
techniques from Chapter 3. And second, they introduce students to some fun-
damental concepts used in all branches of mathematics.

Chapter 6 is devoted to a method of proof that is very important in both
mathematics and computer science: mathematical induction. The presentation
builds on the techniques from Chapter 3, which students should have mastered
by this point in the book.

Finally, in Chapter 7 many ideas from throughout the rest of the book are
brought together to prove some of the most difficult and most interesting the-
orems in the book.

1 would like to thank all those who read earlier drafts of the manuscript and
made many helpful suggestions for improvements, in particular Lauren Cowles
at Cambridge University Press, my colleague Professor Duane Bailey and his
Discrete Mathematics class, who tried out earlier versions of some chapters,
and finally my wife, Shelley, without whose constant encouragement this book
would never have been written.
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Introduction

What is mathematics? High school mathematics is concerned mostly with solv-
ing equations and computing answers to numerical questions. College mathe-
matics deals with a wider variety of questions, involving not only numbers, but
also sets, functions, and other mathematical objects. What ties them together
is the use of deductive reasoning to find the answers to questions. When you
solve an equation for x you are using the information given by the equation
to deduce what the value of x must be. Similarly, when mathematicians solve
other kinds of mathematical problems, they always justify their conclusions
with deductive reasoning.

Deductive reasoning in mathematics is usually presented in the form of a
proof. One of the main purposes of this book is to help you develop your
mathematical reasoning ability in general, and in particular your ability to read
and write proofs. In later chapters we’ll study how proofs are constructed in
detail, but first let’s take a look at a few examples of proofs.

Don’t worry if you have trouble understanding these proofs. They’re
just intended to give you a taste of what mathematical proofs are like. In
some cases you may be able to follow many of the steps of the proof, but you
may be puzzled about why the steps are combined in the way they are, or how
anyone could have thought of the proof. If so, we ask you to be patient. Many
of these questions will be answered later in this book, particularly in Chapter 3.

All of our examples of proofs in this introduction will involve prime num-
bers. Recall that an integer larger than 1 is said to be prime if it cannot be
written as a product of two smaller positive integers. For example, 6 is not a
prime number, since 6 = 2 - 3, but 7 is a prime number.

Before we can give an example of a proof involving prime numbers, we
need to find something to prove — some fact about prime numbers whose
correctness can be verified with a proof. Sometimes you can find interesting
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patterns in mathematics just by trying out a calculation on a few numbers.
For example, consider the table in Figure 1. For each integer n from 2 to 10,
the table shows whether or not both n and 2" — 1 are prime, and a surprising
pattern emerges. It appears that 2" — 1 is prime in precisely those cases in
which 7 is prime!

n Is n prime? 2" —1 Is 27 — 1 prime?

2 yes 3 yes

3 yes 7 yes

4 no:4=2-2 15 no: 15=3-5

5 yes 31 yes

6 no: 6 =23 63 no:63=7-9

7 yes 127 yes

8 no:8§=2-4 255 no: 255 = 15.17

9 no:9=3.3 511 no: 511 =7-73

10 no: 10=2.5 1023 no: 1023 = 31 - 33
Figure 1

Will this pattern continue? It is tempting to guess that it will, but this is
only a guess. Mathematicians call such guesses conjectures. Thus, we have the
following two conjectures:

Conjecture 1. Suppose n is an integer larger than 1 and n is prime. Then
2" — 1is prime.

Conjecture 2. Suppose n is an integer larger than 1 and n is not prime. Then
2" — 1 is not prime.

Unfortunately, if we continue the table in Figure 1, we immediately find that
Conjecture 1 is incorrect. It is easy to check that 11 is prime, but 2! — 1 =
2047 =23-89, so 2! — 1 is not prime. Thus, 11 is a counterexample to
Conjecture 1. The existence of even one counterexample establishes that the
conjecture is incorrect, but it is interesting to note that in this case there are
many counterexamples. If we continue checking numbers up to 30, we find
two more counterexamples to Conjecture 1: Both 23 and 29 are prime, but
223 — 1 = 8,388,607 = 47 - 178,481 and 2?° — 1 = 536,870,911 = 2, 089 -
256,999. However, no number up to 30 is a counterexample to Conjecture 2.

Do you think that Conjecture 2 is correct? Having found counterexamples to
Conjecture 1, we know that this conjecture is incorrect, but our failure to find a
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counterexample to Conjecture 2 does not show that it is correct. Perhaps there
are counterexamples, but the smallest one is larger than 30. Continuing to check
examples might uncover a counterexample, or, if it doesn’t, it might increase
our confidence in the conjecture. But we can never be sure that the conjecture
is correct if we only check examples. No matter how many examples we check,
there is always the possibility that the next one will be the first counterexample.
The only way we can be sure that Conjecture 2 is correct is to prove it.
In fact, Conjecture 2 is correct. Here is a proof of the conjecture:

Proof of Conjecture 2. Since n is not prime, there are positive integers
a and b such that a <n, b <n, and n =ab. Let x =2" — 1 and y =
1+ 2[) + 22/) + .4 2((1—1)[7_ Then

xy=0Q"=1D-(1+2° 427 4... 4207
=2b_(l+2b+22h+___+2(a—|)/7)_(1+2h+22b+_“+2(u—1)b)
:(2b+22b+23h+.__+2ah)_(1+2h+22h+‘“+2(a—1)b)
=2 1
=2"—1.

Since b < n, we can conclude that x =27 —1 < 2" — 1. Also, since
ab = n > a, it follows that b > 1. Therefore, x =2" —1 >2' —1 =1, so
y < xy = 2" — 1. Thus, we have shown that 2" — 1 can be written as the prod-
uct of two positive integers x and y, both of which are smaller than 2" — 1, so
2" — 1 is not prime. O

Now that the conjecture has been proven, we can call it a theorem. Don’t
worry if you find the proof somewhat mysterious. We’ll return to it again at
the end of Chapter 3 to analyze how it was constructed. For the moment, the
most important point to understand is that if » is any integer larger than 1
that can be written as a product of two smaller positive integers a and b, then
the proof gives a method (admittedly, a somewhat mysterious one) of writing
2" — 1 as a product of two smaller positive integers x and y. Thus, if n is not
prime, then 27 — 1 must also not be prime. For example, suppose n = 12, so
2" — 1 = 4095. Since 12 = 3 - 4, we could take @ = 3 and » = 4 in the proof.
Then according to the formulas for x and y given in the proof, we would
have x =2’ —-1=2—1=15, and y=1+2° 422 4 ... 420" =
1+ 2% 428 =273. And, just as the formulas in the proof predict, we have
xy = 15.273 = 4095 = 2" — 1. Of course, there are other ways of factoring
12 into a product of two smaller integers, and these might lead to other ways of
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factoring 4095. For example, since 12 = 2 - 6, we could use the values a = 2
and b = 6. Try computing the corresponding values of x and y and make sure
their product is 4095.

Although we already know that Conjecture 1 is incorrect, there are still inter-
esting questions we can ask about it. If we continue checking prime numbers
n to see if 2" — 1 is prime, will we continue to find counterexamples to the
conjecture — examples for which 2" — 1 is not prime? Will we continue to find
examples for which 2" — 1 is prime? If there were only finitely many prime
numbers, then we might be able to investigate these questions by simply check-
ing 2" — 1 for every prime number n. But in fact there are infinitely many prime
numbers. Euclid (circa 350 B.c.) gave a proof of this fact in Book IX of his
Elements. His proof is one of the most famous in all of mathematics:

Theorem 3. There are infinitely many prime numbers.

Proof. Suppose there are only finitely many prime numbers. Let py, p2, .. .. p,
be a list of all prime numbers. Let m = p;p>--- p, + 1. Note that m is not
divisible by p;, since dividing m by p, gives a quotient of p,p;--- p, and a
remainder of 1. Similarly, m is not divisible by any of p,, ps, ..., p,.

We now use the fact that every integer larger than 1 is either prime or can
be written as a product of primes. (We’ll see a proof of this fact in Chapter 6.)
Clearly m is larger than 1, so m is either prime or a product of primes. Suppose
first that m is prime. Note that m is larger than all of the numbers in the
list py, pa2, ..., Pa, 50 we've found a prime number not in this list. But this
contradicts our assumption that this was a list of all prime numbers.

Now suppose m is a product of primes. Let g be one of the primes in this
product. Then m is divisible by ¢g. But we’ve already seen that m is not divisible
by any of the numbers in the list p;, p2, ..., p,, so once again we have a
contradiction with the assumption that this list included all prime numbers.

Since the assumption that there are finitely many prime numbers has led to
a contradiction, there must be infinitely many prime numbers. O

Once again, you should not be concerned if some aspects of this proof seem
mysterious. After you’ve read Chapter 3 you’ll be better prepared to understand
the proof in detail. We’ll return to this proof then and analyze its structure.

We have seen that if # is not prime then 2" — 1 cannot be prime, but if n is
prime then 2" — 1 can be either prime or not prime. Because there are infinitely
many prime numbers, there are infinitely many numbers of the form 2" — 1
that, based on what we know so far, might be prime. But how many of them
are prime?
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Prime numbers of the form 2" — 1 are called Mersenne primes, after Father
Marin Mersenne (1588—-1647), a French monk and scholar who studied these
numbers. Although many Mersenne primes have been found, it is still not
known if there are infinitely many of them. Many of the largest known prime
numbers are Mersenne primes. As of this writing (April 2005), the largest
known prime number is the Mersenne prime 22>-%0493! _ 1 a pumber with
7,816,230 digits.

Mersenne primes are related to perfect numbers, the subject of another fa-
mous unsolved problem of mathematics. A positive integer » is said to be
perfect if n is equal to the sum of all positive integers smaller than » that divide
n. (For any two integers m and n, we say that m divides n if n is divisible by m;
in other words, if there is an integer g such that n = gm.) For example, the only
positive integers smaller than 6 that divide 6are 1,2,and3,and 1 4+ 2 + 3 = 6.
Thus, 6 1s a perfect number. The next smallest perfect number is 28. (You should
check for yourself that 28 is perfect by finding all the positive integers smaller
than 28 that divide 28 and adding them up.)

Euclid proved that if 2" — 1 is prime, then 2"~'(2" — 1) is perfect. Thus,
every Mersenne prime gives rise to a perfect number. Furthermore, about
2000 years after Euclid’s proof, the Swiss mathematician Leonhard Euler
(1707-1783), the most prolific mathematician in history, proved that every
even perfect number arises in this way. (For example, note that 6 = 21(22 — 1)
and 28 = 22(2* — 1).) Because it is not known if there are infinitely many
Mersenne primes, it is also not known if there are infinitely many even perfect
numbers. It is also not known if there are any odd perfect numbers.

Although there are infinitely many prime numbers, the primes thin out as
we look at larger and larger numbers. For example, there are 25 primes be-
tween 1 and 100, 16 primes between 1000 and 1100, and only six primes
between 1,000,000 and 1,000,100. As our last introductory example of a proof,
we show that there are long stretches of consecutive positive integers con-
taining no primes at all. In this proof, we’ll use the following terminology:
For any positive integer n, the product of all integers from 1 to n is called
n factorial and is denoted n!. Thus, n! =1-2-3...n. As with our previous
two proofs, we’ll return to this proof at the end of Chapter 3 to analyze its
structure.

Theorem 4. For every positive integer n, there is a sequence of n consecutive
positive integers containing no primes.

Proof. Suppose n is a positive integer. Let x = (n + 1)! 4+ 2. We will show that
none of the numbers x, x + 1, x + 2, ..., x + (n — 1) is prime. Since this is a
sequence of n consecutive positive integers, this will prove the theorem.
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To see that x is not prime, note that

x=12.34 - (n+1)+2
=2-(1-3-4---(n+ 1)+ 1).

Thus, x can be written as a product of two smaller positive integers, so x is
not prime.
Similarly, we have

x+1=1-2-3-4.--(n+1)+3
=3.(1-2-4---(n+ D+ 1),

so x + 1 is also not prime. In general, consider any number x + i, where
0 <i <n — 1. Then we have

x+i=1-23.4- (n+D+G+2)
=(+2-(1-2:3 G+ DG +3)--(n+ D+ D),

80 x + i is not prime. 0

Theorem 4 shows that there are sometimes long stretches between one prime
and the next prime. But primes also sometimes occur close together. Since 2
is the only even prime number, the only pair of consecutive integers that are
both prime is 2 and 3. But there are lots of pairs of primes that differ by only
two, for example, 5 and 7, 29 and 31, and 7949 and 7951. Such pairs of primes
are called twin primes. It is not known whether there are infinitely many twin
primes.

Exercises

*1. (a) Factor2!'” — 1 =32,767 into a product of two smaller positive integers.
(b) Find an integer x such that 1 < x < 2*¥767 — 1 and 23¥7%7 — 1 is divis-
ible by x.

2. Make some conjectures about the values of n for which 3" — 1 is prime or
the values of n for which 3" — 2" is prime. (You might start by making a
table similar to Figure 1.)

*3. The proof of Theorem 3 gives a method for finding a prime number different
from any in a given list of prime numbers.
(a) Use this method to find a prime different from 2, 3, 5, and 7.
(b) Use this method to find a prime different from 2, 5, and 11.
4. Find five consecutive integers that are not prime.



