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PREFACE

Algebraic geometry is among the oldest and most highly developed sub-
jects in mathematics. It is intimately connected with projective geometry,
complex analysis, topology, number theory, and many other areas of
current mathematical activity. Moreover, in recent years algebraic geome-
try has undergone vast changes in style and language. For these reasons
there has arisen about the subject a reputation of inaccessibility. This book
gives a presentation of some of the main general results of the theory
accompanied by~—and indeed with special emphasis on—the applications
to the study of interesting examples and the development of computational
tools.

A number of principles guided the preparation of the book. One was to
develop only that general machinery necessary to study the concrete
geometric questions and special classes of algebraic varieties around which
the presentation was centered.

A second was that there should be an alternation between the general
theory and study of examples, as illustrated by the table of contents. The
subject of algebraic geometry is especially notable for the balance provided
on the one hand by the intricacy of its examples and on the other by the
symmetry of its general patterns; we have tried to reflect thls relationship
in our choice of topics and order of presentation.

A third general principle was that this volume should be self-contained.
In particular any “hard” result that would be utilized should be fully
proved. A difficulty a student often faces in a subject as diverse as
algebraic geometry is the profusion of cross-references, and this is one
reason for attempting to be self-contained. Similarly, we have attempted to
avoid allusions to, or statements without proofs of, related results. This
book is in no way meant to be a survey of algebraic geometry, but rather i is,
designed to develop a working facility with specific geometric questlons
Our approach to the subject is initially analytic: Chapters 0 and 1 treat the
basic techniques and results of complex manifold theory, with some
emphasis on results applicable to projective varieties. Beginning in Chapter
2 with the theory of Riemann surfaces and algebraic curves, and continu-
ing in Chapters 4 and 6 on algebraic surfaces and the quadric line
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vi PREFACE

complex, our treatment becomes increasingly geometric along classical
lines. Chapters 3 and 5 continue the analytic approach, progressing to
more special topics in complex manifolds.

Several important topics have been entirely omitted. The most glanng
are the arithmetic theory- of algebraic varieties, moduli questions, and
singularities. In these cases the necessary techniques are not fully devel-
oped here. Other topics, such as uniformization and automorphic forms or
monodromy and mixed Hodge structures have been omitted, although the
necessary techniques are for the most part available. -

We would like to thank Giuseppe Canuto, S. S. Chern, Maurizio
Cornalba, Ran Donagi, Robin Hartshorne, Bill Hoffman, David Morrison,
David Mumford, Arthur Ogus, Ted Shifrin, and Loring Tu for many
fruitful discussions; Ruth Suzuki for her wonderful typing; and the staff of
John Wiley, especially Beatrice Shube, for enormous patience and skill in
converting a very rough manuscript into book form.

PHILLiP GRIFFITHS
JosepH HARRIS

May 1978
Cambridge, Massachusetts
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FOUNDATIONAL
MATERIAL

In this chapter we sketch the foundational material from several complex
variables, complex manifold theory, topology, and differential geometry
that will be used in our study of algebraic geometry. While our treatment is
for the most part self-contained, it is tacitly assumed that the reader has
some familiarity with the basic objects discussed. The primary purpose of
this chapter is to establish our viewpoint and tp present those results
needed in the form in which they will be used later on. There are, broadly
speaking, four main points:

1. The Weierstrass theorems and corollaries, discussed in Sections 1 and
2. These give us our basic picture of the local character of analytic
varieties. The theorems themselves will not be quoted directly later, but the
picture—for example, the local representation of an analytic variety as a
branched covering of a polydisc—is fundamental. The foundations of
local analytic geometry are further discussed in Chapter 5.

2. Sheaf theory, discussed in Section 3, is an important tool for relating
the analytic, topological, and geometric aspects of an algebraic variety. A
good example is the exponential sheaf sequence, whose individual terms Z,
O, and O* reflect the topological, analytic, and geometric structures of the
underlying variety, respectively.

3. Intersection theory, discussed in Section 4, is a cornerstone of classi-
cal algebraic geometry. It allows us to treat the incidence properties of
algebraic varieties, a priori a geometric question, in topological terms.

4. Hodge theory, discussed in Sections 6 and 7. By far the most
sophisticated technique introduced in this chapter, Hodge theory has, in
the present context, two principal applications: first, it gives us the Hodge
decomposition of the cohomology of a Kihler manifold; then, together with
the formalism introduced in Section 5, it gives the vanishing theorems of

the next chapter.
1



2 . FOUNDATIONAL MATERIAL
1. RUDIMENTS OF SEVERAL COMPLEX VARIABLES

- Cauchy’s Formula and Applications
NotaTiON. We will write z=(z,,...,z,) for a point in C", with
Z=x+V-1y;

2l = (z,2) = ﬁ Iz,

For U an open set in C", write C*®(U) for the set of C* functions
defined on U; C*(U) for the set of C* functions defined in some
neighborhood of the closure U of U. y

The cotangent space to a point in C"=R?" is spanned by {dx,dy;}; it
will often be more convenient, however, to work with the complex basis

. dg=dq+V-1ady, dz; = dx; =V -1 &,
and the dual basis in the tangent space

d l ,——a a 1
3z, (ax, i) oz (ax+\/—ay)

62, 2 0z, 2
With this notation, the formula for the total differential is
#=3 o s+ 2 . oz,
Z;

In one variable, we say a C* function f on an open set UCC is
holomorphic if f satlsfws the Cauchy-Riemann equations 3f/3z=0. Writing
j(z)== u(z)+ V — 1 v(z), this amounts to

R(af)_va_‘a_bﬂ,

0z dy
o ) du  dv 2 :
Im( = B ¥ P 0.

We say f is analytic if, for all z,€ U, f has a local series expansion in z — z,,
1€,

5z = 3. (=20

in some disc A(zp,e)={z: |z =2z, <e} where the sum converges absolutely
and uniformly. The first result is that f is analytic if and only if it is
holomorphic; to show this, we use the

Cauchy Integral Formula. For A a disc in C, fEC®(B), z€A,

- f(w)dw &f(w) dw/\dw
fiz) 21r\/_ Wf'z 271'\/_——.[ w—z '
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where the line integrals are taken in the counterclockwise direction (the fact
that the last integral is defined will come out in the proof).

’Pmoﬁ The proof is based on Stokes’ formula for a differential form with
singularities, a method which will be formalized in Chapter 3. Consider the
differential form

__ 1 fwaw,

20V =1 Ww—z'
we have for z#w

d 1

sa(w-z)-o

and so
iy 1 af(w) dwAdw
V=1 W w—z
Let A, =A(z,e) be the disc of radius & around z. The form n is C*® in
A—A4,, and applying Stokes’ theorem we obtain

1 fw)dw _ 1 f(w)dw
272V —1 A, w=z 27V -1 A w—z
+;f Y dvpiw
IV =1 A_A'aw w—2z

- Setting w—z=re®,

i Cflw)dw _ 1 27 P
eV =1 s, W2 —2-77.[0 Sz +ee®)dd,

which tends to f(z) as e—0; moreover,

dwAdw=—2V—=1dx ANdy = -2V =1 rdr Nd9

laf(w) dw/\dw | _ )

w w—z

a—{ dr \dB| < c|dr )\ db)|.
ow

Thus (3f /9w )dw/\dw)/(w—z) is absolutely integrable over A, and
f Y —dw/\dW -0
A!

w w—z
as e—0; the result follows. ‘ Q.E.D.

Now we can prove the

Proposition. For U an open sei in C and f €C*(U), f is holomorphic if and
only if f is analytic.



4 FOUNDATIONAL MATERIAL

Proof. Suppose first that 9f/9z=0. Then for z, € U, ¢ sufficiently small,
and z in the disc A=A(zy,¢) of radius & around z,

- 1 f(w)dw
f2) 217\7_—
f f(W)dw
2#\/— (w—20)—(z2—20)
J(w)dw

2"\/—— aA (w—zo)(l - fv:zz‘;)

n=0 277'\/—_1 aA(w—Zo)
s0, setting

e 1 f(w)dw

n 21,\/_—1 o (w_zo)n+l 2

we have

1) = 3 a,(z=20"

for z€A, where the sum converges absolutely and uniformly in any smaller
Suppose conversely that f(z) has a power series expansion

f(Z) = zoan(z—zo)”
for z EA=A(zy,¢). Since (3/02)(z — zo)" =0, the partial sums of the expan-
sion satisfy Cauchy’s formula without the area integral, and by the uniform
convergence of the sum in a neighborhood of z, the same is true of f, i.e.,

1 aw
fz) = JOn)de:
2oV —=1 Ja w—2z
We can then differentiate under the integral sign to obtain
g 2 f(w) )
6ff(z) 2,,\/— (w z iy i

since for z#w

%( : )=0. QED.

w—2z
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We prove a final result in ope variable, that given a C* function g on a
disc A the equation

Y
0z
can always be solved on a slightly smaller disc; this is the

d-Poincaré Lemma in One Variable. Given g(z) €C®(B), the function

_ W) 1 A dw
f2) 297\/_ f ki
is defined and C* in A and satisfies
o _
9z

Proof. For zoEA choose e such that the disc A(zy,2¢) CA and write

g(z) = g(z) + gx(2),
where g,(z) vanishes outside A(zy,2¢) and g,(z) vanishes inside A(z,¢). The
integral

1 dw/\dw
Z) = ——
50 = 5= [ 8.
is well-defined and C* for z EA(zo, €); there we have
a - gz(w))
az.fz(z) 2'”\/— faz dw N\ dw = 0.
Since g,(z) has compact support, we can write
s e TAT = = [a ) ST
2aV =1 Ja : w=2z 27rV A
: du/\du
= u+z
e f Aiuet)

where u=w—z. Changing to polar coordinates u=re” this integral be-
comes

fi(z) = —%fg,(z+re"”)e""’dr/\d0,
c

which is clearly defined and C* in z. Then

afi(z) _ _1 Eg_l 0y, —i0
7 - 77]; —~(z+re®)e %dr NdO
1 fag,( )dw/\dw
21rV '
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but g, vanishes on dA, and so by the Cauchy formula

3/ = 5p4() = 8i) = 8) QED.

Several Variables

In the formula

for the total differential of a function f on C", we denote the first term 9f
and the second term 9f;  and 9 are differential operators invariant under a
complex linear change of coordinates. A C* function f on an opsn set
U cC" is called holomorphic if 3f=0; this is equivalent to f(z,,...,z,) being
holomorphic in each variable z; separately.

As in the one-variable case, a function f is holomorphic if and only if it
has iocal power series expansions in the variables z,. This is clear in one
direction: by the same argument as before, a convergent power series
defines a holomorphic function. We check the converse in the case n=2;
the computation for general n is only notationally more difficult. For f
holomorphic in the open set U CC?, z, € U, we can fix A the disc of radius
r around z,€U and apply the one-variable Cauchy formula twice to
obtain, for (z,,2,) €A, ‘

! 1 f(z,,w,)dw
f(zl’22)=_ _£_+)2
27V -1 i W= 2,
Wy—Zg)|=r
_ o 1 Jwi,wy)dw, | dw,
27V —1 - 2aV —1 P W =2z W=z

=(__1_)2ff J(wy, wy) dw, dw,
27V -1 lw’_to"_’(wl_zl)(wz—ZZ) .

Using the series expansion

1 ~ (2, ——zo|)’"(z2—— Zo,)"

(wi—z)(w;— 23) - m,n=0 zwl“‘ho,)MH(WZ-ZOI)"H ,

we find that f has a local series expansion

fevi) = 3 anali-2)"(5-2)".  QED.

m,n=



