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Preface

This book is based on an interdisciplinary course on logic offered to
upper-level undergraduates at Duke University over a period of more
than ten years. Why an interdisciplinary course on logic? Although
logic has been a discipline of study in philosophy since ancient times,
in recent decades it has played an important role in other disciplines as
well. For example, logic is at the core of two programming languages, is
used in program verification, has enriched philosophy (and computer
science) with non-classical logics that can deal constructively with
contradictions, and has shaken the foundations of mathematics with
insight into non-computable functions and non-provability. Several of
these ideas are treated in this book.

We developed a one-semester course suitable for undergraduates that
presents some of these more recent, exciting ideas in logic as well as
some of the traditional, core ideas. Undergraduate students generally
have limited time to pursue logic courses and we found that the course
we offered gave them some understanding of both the breadth of logic
and the depth of ideas in logic.

This book addresses select topics drawn from three different areas
of logic: proof theory, computability theory, and philosophical logic.
A common thread throughout is the application of logic to computers
and computation.

Part 1 on Proof Theory introduces a deductive system (resolution
logic) that comes from an area of research known as automated deduc-
tion.

Part 2 on Computability Theory explores the limits of computation
using an abstract model of computers called register machines.

Part 3 on Philosophical Logic presents a certain non-classical logic
(relevance logic) and a semantics for it that is useful for automated
reasoning systems that must deal with the possibility of inconsistent
information.

The book can serve a variety of needs. For the first time there is now
available a text for an instructor who would like to offer a course that
teaches the role of logic in several disciplines. The book could also be
used as a supplementary text for a logic course that emphasizes the
more traditional topics of logic but also wishes to include a few special
topics. The book is also designed to be a valuable resource for researchers
and academics who want an accessible yet substantial introduction to
the three topics.
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The three areas from which the special topics are drawn — proof
theory, computability theory, and philosophical logic — exhibit the
different roles that logic plays in three different disciplines: computer
science, mathematics, and philosophy. The three parts of the book were
written by a computer scientist, a mathematician, and a philosopher,
respectively, and each part was reviewed by the other two authors for
accessibility to students in their fields. The three parts of the book are
roughly of equal length. The second part, on computability theory, is
largely independent of the first, but the third part, on philosophical
logic, is best presented after the first two parts.

Although it is helpful to have had a previous course in logic, we
present the topics in such a way that this is not necessary. However,
some mathematical background is useful, especially if no logic back-
ground is offered. We had a number of freshmen and sophomores take
this course with success, but they had a strong analytic preparation.
In particular, prior exposure to proofs by induction is important. (We
do offer a summary review of the induction methods employed in an
appendix.)

The three topics covered are both timely and important. Although
the use of automated theorem proving in artificial intelligence (Al) is
often associated with the early decades of Al, it is also of great value in
some current Al research programs. Watson, IBM’s question-answering
computer, made famous in 2011 by an impressive performance on the
quiz show Jeopardy!, employed resolution logic (presented in Part 1)
through the resolution-based programming language Prolog.

Part 2, on computability theory, presents one of the great success
stories of mathematical logic. We now have a methodology for proving
that certain problems cannot be solved by an algorithm. The ideas
required to reach this goal can be traced back to Godel and Turing and
moreover played an important role in the development of the modern-
day computer; it is for this reason that Godel’s and Turing’s names are
on Time magazine’s list of the twenty most influential scientists and
thinkers of the twentieth century.

Classical logic was motivated by considerations in mathematics.
The important role that logic plays in other disciplines has given rise
to logics that extend or differ from classical logic; examples include
modal logic, intuitionistic logic, fuzzy logic, and relevance logic. Part 3
explores the ideas of extensions and alternatives to classical logic, with
an in-depth treatment of one of these, relevance logic.

The book begins with proof theory for both propositional logic and
first-order logic. In each case, there is a quick review of the semantics
of that logic. This has the advantage of serving as background for
the subsequent parts on computability theory and non-classical logics.
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A computer-oriented deductive logic based on the resolution inference
rule is employed. At the propositional level all proofs are given, in-
cluding both soundness and completeness proofs. In resolution logic
the completeness theorem proof has an intuitive graphical form that
makes the proof easier to comprehend. At the first-order level proofs are
deferred to a set of problems to be undertaken by the mathematically
oriented students. They cover most of the major results, including the
steps to the completeness theorem. Plausibility arguments are used
instead. This pedagogical strategy works well without losing the impor-
tant content because first-order proof theory based on resolution em-
ploys lifting proofs almost verbatim from the propositional counterpart
proof. The lifting process is discussed in detail. There is an extensive
treatment of restrictions of resolution logic based on linear resolution
that serves as the basis of Prolog, a computer programming language
based on deduction. No programming experience is required.

The second part of the book introduces the student to computabil-
ity theory, an area of mathematical logic that should be of interest
to a broad audience due to its influence on the development of the
computer. There are two major goals: clarify the intuitive notion of an
algorithm; and develop a methodology for proving that certain prob-
lems cannot be solved by an algorithm. Four famous problems whose
solution requires an algorithm are emphasized: Hilbert’s Decision Prob-
lem, Hilbert’s Tenth Problem, the Halting Problem, and Thue’s Word
Problem. A wide range of explicit algorithms are described, after which
attention is restricted to the set of natural numbers. In this setting
three informal concepts are defined (each in terms of an algorithm):
computable function, decidable relation, and semi-decidable relation.
The first three problems mentioned above are semi-decidable (in a more
general sense), but are they decidable? Two models of computation are
described in considerable detail, each with the motivation of giving a
precise counterpart to the three informal concepts. The first model is
a machine model, namely the register machine and RM-computable
functions. Turing’s diagonal argument that the Halting Problem is
unsolvable is given, together with an outline of his application of that
result, namely that Hilbert’s Decision Problem is unsolvable. The Post-
Markov result that the Word Problem is unsolvable is also proved.
The second model of computation is a mathematical model, the re-
cursive functions. Precise counterparts of the three informal concepts
are defined: recursive functions, recursive relations, and recursively
enumerable relations. There is a detailed proof that the two models
give the same class of functions. The relationship between the informal
concepts and their formal counterparts, together with the important
role of the Church-Turing Thesis, is emphasized.
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The third part of the book consists of topics from philosophical
logic, with an emphasis on the propositional calculus of a particular
non-classical logic known as relevance logic. We follow Anderson and
Belnap’s own presentation of it here. The topic is presented by first
considering some well-known theorems of classical propositional logic
that clash with intuitions about the use of “if ...then ...,” which have
been known as “paradoxes of implication.” The student is invited to
reflect on the features of classical logic that give rise to them. This
is approached by presenting the rules for a natural deduction system
for classical logic and examining which features of these rules permit
derivation of the non-intuitive theorems or (so-called) paradoxes. This
motivates considering alternative rules for deriving theorems, which is
an occasion for a discussion of the analysis of the conditional (if . . . then
...)and its relation to deduction and derivation. The non-classical logic
known as relevance logic is presented as one such alternative. Both a
natural deduction style proof system and a four-valued semantics (told
true, told false, told both, told neither) for this logic are given. This is
important, as some philosophers present relevance logic as a paracon-
sistent logic. The pedagogical approach we take here shows that is by no
means mandatory: by the use of the engaging example of its application
in a question-answering computer, we present a practical application in
which this non-classical logic accords well with intuitions about what
one would want in a logic to deal with situations in which we are faced
with conflicting information. This example broadens the student’s
ideas of the uses and capabilities of logic. The inferential semantics
is presented using a mathematical structure called a lattice. A brief
introduction to mathematical lattices is provided. Then, drawing on the
points in the classic paper “How a Computer Should Think,” it is shown
that, in certain contexts in which automated deduction is employed,
relevance logic is to be preferred over classical logic. Some connections
with the two earlier parts of the course on computer deduction and
computability theory are made. Part 3 closes with some remarks on the
impact of relevance logic in various disciplines.
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