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Preface

This book is a reflection of my limited experience with calculations in-
volving polynomial splines. It stresses the representation of splines as linear
combinations of B-splines, provides proofs for only some of the results
stated but offers many Fortran programs, and presents only those parts
of spline theory that I found useful in calculations. The particular litera-
ture selection offered in the bibliography shows the same bias; it contains
only items to which I needed to refer in the text for a specific result or a
proof or additional information and is clearly not meant to be representa-
tive of the available spline literature. Also, while I have attached names to
some of the results used, I have not given a careful discussion of the his-
torical aspects of the field. Readers are urged to consult the books listed in
the bibliography (they are marked with an asterisk) if they wish to develop
a more complete and balanced picture of spline theory.

The following outline should provide a fair idea of the intent and content
of the book.

The first chapter recapitulates material needed later from the ancient
theory of polynomial interpolation, in particular, divided differences. Those
not familiar with divided differences may find the chapter a bit terse. For
comfort and motivation, I can only assure them that every item mentioned
will actually be used later. The rudiments of polynomial approximation the-
ory are given in Chapter II for later use, and to motivate the introduction
of piecewise polynomial (or, pp) functions.

Readers intent upon looking at the general theory may wish to skip the
next four chapters, as these follow somewhat the historical development,
with piecewise linear, piecewise cubic, and piecewise parabolic approxima-
tion discussed, in that order and mostly in the context of interpolation.
Proofs are given for results that, later on in the more general context
of splines of arbitrary order, are only stated. The intent is to summarize
elementary spline theory in a practically useful yet simple setting.

The general theory is taken up again starting with Chapter VI1I, which,
along with Chapter VIII, is devoted to the computational handling of pp
functions of arbitrary order. B-splines are introduced in Chapter IX. It is

v



vi Preface

only in that chapter that a formal definition of “spline” as a linear combi-
nation of B-splines is given. Chapters X and XI are intended to familiarize
the reader with B-splines.

The remaining chapters contain various applications, all (with the no-
table exception of taut spline interpolation in Chapter XVI) involving
B-splines. Chapter XII is the pp companion piece to Chapter II; it contains
a discussion of how well a function can be approximated by pp functions.
Chapter XIII is devoted to various aspects of spline interpolation as a par-
ticularly simple, computationally efficient yet powerful scheme for spline
approximation in the presence of exact data. For noisy data, the smooth-
ing spline and least-squares spline approximation are offered in Chapter
XIV. Just one illustration of the use of splines in solving differential equa-
tions is given, in Chapter XV, where an ordinary differential equation is
solved by collocation. Chapter XVI contains an assortment of items, all
loosely connected to the approximation of a curve. It is only here (and in
the problems for Chapter VI) that the beautiful theory of cardinal splines,
i.e., splines on a uniform knot sequence, is discussed. The final chapter
deals with the simplest generalization of splines to several variables and
offers a somewhat more abstract view of the various spline approximation
processes discussed in this book.

Each chapter has some problems attached to it, to test the reader’s un-
derstanding of the material, to bring in additional material and to urge, at
times, numerical experimentation with the programs provided. It should
be understood, though, that Problem 0 in each chapter that contains pro-
grams consists of running those programs with various sample data in order
to gain some first-hand practical experience with the methods espoused in
the book.

The programs occur throughout the text and are meant to be read, as
part of the text.

The book grew out of orientation lectures on splines delivered at Red-
stone Arsenal in September, 1976, and at White Sands Missile Range in
October, 1977. These lectures were based on a 1973 MRC report concerning
a Fortran package for calculating with B-splines, a package put together in
1971 at Los Alamos Scientific Laboratories around a routine (now called
BSPLVB) that took shape a year earlier during a workshop at Oberlin orga-
nized by Jim Daniel. I am grateful for advice received during those years,
from Fred Dorr, Cleve Moler, Blair Swartz and others.

During the writing of the book, I had the benefit of detailed and copious
advice from John Rice who read various versions of the entire manuscript.
It owes its length to his repeated pleas for further elucidation. I owe him
thanks also for repeated encouragement. I am also grateful to a group
at Stanford, consisting of John Bolstad, Tony Chan, William Coughran,
Jr., Alphons Demmler, Gene Golub, Michael Heath, Franklin Luk, and
Marcello Pagano that, through the good offices of Eric Grosse, gave me
much welcome advice after reading an early version of the manuscript. The
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programs in the book would still be totally unreadable but for William
Coughran’s and Eric Grosse's repeated arguments in favor of comment
cards. Dennis Jespersen read the final manuscript with astonishing care
and brought a great number of mistakes to my attention. He also raised
many questions, many of which found place among the problems at the end
of chapters. Walter Gautschi, and Klaus Bohmer and his students, read a
major part of the manuscript and uncovered further errors. I am grateful
to them all.

Time for writing, and computer time, were provided by the Mathematics
Research Center under Contract No. DAAG29-75-C-0024 with the U.S.
Army Research Office. Through its visitor program, the Mathematics Re-
search Center also made possible most of the helpful contacts acknowledged
earlier. [ am deeply appreciative of the mathematically stimulating and free
atmosphere provided by the Mathematics Research Center.

Finally, I would like to thank Reinhold de Boor for the patient typing of

the various drafts.
Carl de Boor

Madison, Wisconsin
February 1978

The present version differs from the original in the following respects.
The book is now typeset (in plain TEX; thank you, Don Knuth!), the For-
tran programs now make use of FORTRAN 77 features, the figures have been
redrawn with the aid of MATLAB (thank you, Cleve Moler and Jack Little!),
various errors have been corrected, and many more formal statements have
been provided with proofs. Further, all formal statements and equations
have been numbered by the same numbering system, to make it easier to
find any particular item. A major change has occurred in Chapters IX-XI
where the B-spline theory is now developed directly from the recurrence re-
lations without recourse to divided differences (except for the derivation of
the recurrence relations themselves). This has brought in knot insertion as
a powerful tool for providing simple proofs concerning the shape-preserving
properties of the B-spline series.

I gratefully acknowledge support from the Army Research Office and
from the Division of Mathematical Sciences of the National Science
Foundation.

Special thanks are due to Peter de Boor, Kirk Haller, and S. Nam for
their substantial help, and to Reinhold de Boor for the protracted final
editing of the TEX files and for all the figures.

Carl de Boor
Madison, Wisconsin
October 2000



Notation

Here is a detailed list of all the notation used in this book. Readers will
have come across some of them, perhaps most of them. Still, better to bore
them now than to mystify them later.

:= is the sign indicating “equal by definition”. It is asymmetric as such a

sign should be (as none of the customary alternatives, such as =, or def

L]

or -A=, etc., are). Its meaning: “a := b” indicates that a is the quantity
to be defined or explained, and b provides the definition or explanation,
and “b =: @” has the same meaning.

{z,y,z,...} := the set comprising the elements z, y, z, ... .
{x € X : P(z) } := the set of elements of X having the property P(z).
(z,y,...):= the sequence whose first term is z, whose second term is vy, ...
#S := the number of elements (or terms) in the set (or sequence) S.

@ := the empty set.

IN:= {1,2,3,...}.

Z:= {..,-2,-1,01,2,..}.

IR := the set of real numbers.

C := the set of complex numbers.

Z := the complex conjugate of the complex number z.

la..b]:= {zeR:a<z<b},aclosed interval. This leaves |a, b] free to
denote a first divided difference (or, perhaps, the matrix with the two
columns a and b).

(a..b):= {reR:a<z<b}, an open interval. This leaves (a, d) free to
denote a particular sequence, e.g., a point in the plane (or, perhaps, the
inner product of two vectors in some inner product space). Analogously,
[@..d) and (a..b] denote half-open intervals.

consts, ., := a constant that may depend on q,...,w.

Xv



xvi Notation

f:A — B:a — f(a) describes the function f as being defined on
A =: dom f (called its domain) and taking values in the set B =: tar f
(called its target), and carrying the typical element a € A to the el-
ement f(a) € B. For example, F:IR — IR:z ~ exp(r) describes the
exponential function. I will use at times f:a — f(a) if the domain and
target of f are understood from the context. Thus, u: f fol flz)dx
describes the linear functional p that takes the number fol flxr)dzx as
its value at the function f, presumably defined on [0..1] and integrable
there.

supp f := {z € dom f : f(z) # 0}, thesupport of f. Note that, in Analysis,
it is the closure of this set that is, by definition, the support of f.

fir == g:1 — B:a f(a), the restriction of f to I

+ .
h— {g_ := h approaches O through I?:;:;;;i values.

fla*y:= lim f(a+h), f(a7):= lim fla+h).

jumpe f := f(a*) — f(a™), the jump in f across a.
g{z) = O(f(z)) (in words,“g(x) is of order f(z)") as x approaches a :=

limn sup | %—% | < co. The limsup itself is called the order constant of
r—a

this order relation.

g(x) = o(f(zx)) (in words, “g(z) is of higher order than f(z)") as z
approaches a := lim CICI )

z—a f(Z)
fGy)y = the function of one variable obtained from the function
f: X xY — Z by holding the second variable at a fixed value y.

Also, f: G(-,y)g(y) dy describes the function that results when a certain
integral operator is applied to the function g.

(r), := max{z,0}, the truncation function.
Inx := the natural logarithm of z.

|r|:= max{n € Z:n <z}, the floor function.
fr] := min{n € ZZ: n > x}, the ceiling function.

¢; ;= a Lagrange polynomial (p. 2).

(=)= (=1
&) = ey » & binomial coefficient.

&, = The Euler spline of degree n (p. 65).

Boldface symbols denote sequences or vectors, the ith term or entry is
denoted by the same letter in ordinary type and subscripted by :. Thus,
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T, (1), ()Y, ()L, (v =1,....n), and (71,...,7,) are various ways
of describing the same n-vector.

m:= (m,...,m), form e ZZ

XM i={(z)} 'z € X, allt}.

AT, = 7,41 — Ti, the forward difference.

Vri:= 7; — 1i_1, the backward difference.

S™7 := number of strong sign changes in 7 (p. 138).

S8*7 := number of weak sign changes in 7 (p. 232).

i=r ) .

Yo T= Zs: Ti, with 7 and s understood from the context.

i=r
7= {IT'TTHMTS, ifr<s;
= , ifr>s.

For nondecreasing sequences or meshes 7, we use
[T| := max,; Ar;, the mesh size.

My .= max; ; A1;/A7,, the global mesh ratio.
My := maX|;_;|=) A7;/AT;, the local mesh ratio.
Tiv1/2 = (Ti + Ti41)/2 .

Matrices are usually denoted by capital letters, their entries by corre-
sponding lower case letters doubly subscripted. A, (ai;), (a:;)7™
ann ... Qin

’

(@) T2qi5=1s : : are various ways of describing the
aGm1 ... Qmnp
same matrix.
T ._ \n .m
A" = (a;i)7-1; 72, the transpose of A.

AH = (@ji)7=1;2,, the conjugate transpose or Hermitian of A.
det A := the determinant of A.

0 i#j’

span(y;) := { ), ai¢, : &, € R}, the linear combinations of the sequence
(pi)T of elements of a linear space X. Such a sequence is a basis for
its span in case it is linearly independent, that is, in case Zi o =0
implies that a = 0. We note that the linear independence of such a se-
quence (;)7 is almost invariably proved by exhibiting a corresponding
sequence (A;)7 of linear functionals on X for which the matrix (\;;) is
invertible, e.g., A;@; = §;;, for all 1, . In such a case, dim span(p,)} = n.

8i5 = { L *=J | the Kronecker Delta.
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Ik := Iy, := linear space of polynomials of order k (p. 1).

ke := Ilk_1 ¢ := linear space of pp functions of order k with break
sequence £ (p. 70).

D7 f := jth derivative of f; for f € II<x ¢, see p. 70.

Nekgr = Hrk1¢, = linear subspace of Il x ¢ consisting of those
elements that satisfy continuity conditions specified by v (p. 82).

$i.¢ := span(B, ), linear space of splines of order k with knot sequence
t (p. 93).

B, := B« := ith B-spline of order k with knot sequence t (p. 87).

$k‘n - U{f S $k,t : tl —_ ... = tk = avtn+l —_ ... = £n+k = b} (pp 1631
239).
R% = ‘“natural” splines of order k for the sites x (p. 207).

Cla..b]:={f:[a..b] = IR : f continuous }.

IFll = max{|f(z)] : e <z < b}, the uniform norm of f € Cla..b]. (We

note that ||f +gll < |Ifl| + llgll and |laf|| = |al||f|| for f,9 € Cla..]
and a € R).

w(fih) == max{|f(z) - f(¥)| : z,y € [a..b],|z — y| < h}, the modulus of
continuity for f € Cla.. ] (p. 25). :

dist (g, S) :=inf{|lg — f|| : f € S}, the distance of g € Cla .. b] from the
subset S of Cla .. b].

C™a..bl:={fila..b) - R: f isn times continuously differentiable }.

[Tiy...,7;]f := divided difference of order j — i of f, at the sites 7;, .. ., T,
(p- 3). In particular, [r]: f — f(7).
Special spline approximation maps:
I == interpolation by splines of order k (p. 182),
L; := Least-squares approximation by splines of order k (p- 220),

V := Schoenberg’s variation diminishing spline approximation (p. 141).
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Polynomial Interpolation

In this introductory chapter, we state, mostly without proof, those ba-
sic facts about polynomial interpolation and divided differences needed in
subsequent chapters. The reader who is unfamiliar with some of this ma-
terial is encouraged to consult textbooks such as Isaacson & Keller [1966)
or Conte & de Boor [1980] for a more detailed presentation.

One uses polynomials for approximation because they can be evaluated,
differentiated, and integrated easily and in finitely many steps using the
basic arithmetic operations of addition, subtraction, and multiplication. A
polynomial of order n is a function of the form

n
(1) P(I):al+0»217+“-+an1n_1:§:a)1’j_1»
j=1

i.e., a polynomial of degree < n. It turns out to be more convenient to
work with the order of a polynomial than with its degree since the set of
all polynomials of degree n fails to be a linear space, while the set of all
polynomials of order n forms a linear space, denoted here by

H(n = HSn—l = Hn—l~

Note that a polynomial of order n has exactly n degrees of freedom.

Note also that, in MATLAB, hence in the SPLINE TOOLBOX (de Boor
[1990]2), the coefficient sequence a = [a(1), ... ,a(n)] of a polyno-
mial of order n starts with the highest coefficient. In particular, if x is a
scalar, then the MATLAB command polyval(a,x) returns the number

a(D)*x"(n-1) + a(D*x"(n-2) + ... + a(n-1)*x + a(n)



