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Preface

RAPHS AND GRAPH algorithms are pervasive in modern com-

puting applications. This book describes the most important
known methods for solving the graph-processing problems that arise
in practice. Its primary aim is to make these methods and the basic
principles behind them accessible to the growing number of people in
need of knowing them. The material is developed from first principles,
starting with basic information and working through classical methods
up through modern techniques that are still under development. Care-
fully chosen examples, detailed figures, and complete implementations
supplement thorough descriptions of algorithms and applications.

Algorithms

This book is the second of three volumes that are intended to survey
the most important computer algorithms in use today. The first volume
(Parts 1-4) covers fundamental concepts (Part 1), data structures (Part
2), sorting algorithms (Part 3), and searching algorithms (Part 4);
this volume (Part 5) covers graphs and graph algorithms; and the
(vet to be published) third volume (Parts 6-8) covers strings (Part
6), computational geometry (Part 7), and advanced algorithms and
applications (Part 8).

The books are useful as texts early in the computer science cur-
riculum, after students have acquired basic programming skills and
familiarity with computer systems, but before they have taken spe-
cialized courses in advanced areas of computer science or computer
applications. The books also are useful for self-study or as a refer-
ence for people engaged in the development of computer systems or
applications programs because they contain implementations of useful
algorithms and detailed information on these algorithms’ performance
characteristics. The broad perspective taken makes the series an ap-
propriate introduction to the field.
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Together the three volumes comprise the Third Edition of a book
that has been widely used by students and programmers around the
world for many years. I have completely rewritten the text for this
edition, and I have added thousands of new exercises, hundreds of
new figures, dozens of new programs, and detailed commentary on all
the figures and programs. This new material provides both coverage of
new topics and fuller explanations of many of the classic algorithms. A
new emphasis on abstract data types throughout the books makes the
programs more broadly useful and relevant in modern object-oriented
programming environments. People who have read previous editions
will find a wealth of new information throughout; all readers will
find a wealth of pedagogical material that provides effective access to
essential concepts.

These books are not just for programmers and computer science
students. Everyone who uses a computer wants it to run faster or to
solve larger problems. The algorithms that we consider represent a
body of knowledge developed during the last 50 years that is the basis
for the efficient use of the computer for a broad variety of applications.
From N-body simulation problems in physics to genetic-sequencing
problems in molecular biology, the basic methods described here have
become essential in scientific research; and from database systems to
Internet search engines, they have become essential parts of modern
software systems. As the scope of computer applications becomes
more widespread, so grows the impact of basic algorithms. The goal
of this book is to serve as a resource so that students and professionals
can know and make intelligent use of graph algorithms as the need
arises in whatever computer application they might undertake.

Scope

This book, Algorithms in Java, Third Edition, Part 5: Graph Algo-
rithms, contains six chapters that cover graph properties and types,
graph search, directed graphs, minimal spanning trees, shortest paths,
and networks. The descriptions here are intended to give readers an
understanding of the basic properties of as broad a range of funda-
mental graph algorithms as possible.

You will most appreciate the material here if you have had a
course covering basic principles of algorithm design and analysis and



programming experience in a high-level language such as Java, C++,
or C. Algorithms in Java, Third Edition, Parts 1-4, is certainly ade-
quate preparation. This volume assumes basic knowledge about ar-
rays, linked lists, and abstract data types (ADTs) and makes use of
priority-queue, symbol-table, and union-find ADTs—all of which are
described in detail in Parts 1-4 (and in many other introductory texts
on algorithms and data structures).

Basic properties of graphs and graph algorithms are developed
from first principles, but full understanding often can lead to deep and
difficult mathematics. Although the discussion of advanced mathe-
matical concepts is brief, general, and descriptive, you certainly need a
higher level of mathematical maturity to appreciate graph algorithms
than you do for the topics in Parts 1—4. Still, readers at various levels of
mathematical maturity will be able to profit from this book. The topic
dictates this approach: Some elementary graph algorithms that should
be understood and used by everyone differ only slightly from some
advanced algorithms that are not understood by anyone. The primary
intent here is to place important algorithms in context with other meth-
ods throughout the book, not to teach all of the mathematical material.
But the rigorous treatment demanded by good mathematics often leads
us to good programs, so I have tried to provide a balance between the
formal treatment favored by theoreticians and the coverage needed by
practitioners, without sacrificing rigor.

Use in the Curriculum

There is a great deal of flexibility in how the material here can be
taught, depending on the taste of the instructor and the preparation
of the students. There is sufficient coverage of basic material for the
book to be used to teach data structures to beginners, and there is
sufficient detail and coverage of advanced material for the book to
be used to teach the design and analysis of algorithms to upper-level
students. Some instructors may wish to emphasize implementations
and practical concerns; others may wish to emphasize analysis and
theoretical concepts.

For a more comprehensive course, this book is also available in
a special bundle with Parts 1-4; thereby instructors can cover funda-
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mentals, data structures, sorting, searching, and graph algorithms in
one consistent style.

The exercises—nearly all of which are new to this third edition—
fall into several types. Some are intended to test understanding of ma-
terial in the text, and simply ask readers to work through an example
or to apply concepts described in the text. Others involve implement-
ing and putting together the algorithms, or running empirical studies
to compare variants of the algorithms and to learn their properties.
Still others are a repository for important information at a level of
detail that is not appropriate for the text. Reading and thinking about
the exercises will pay dividends for every reader.

Algorithms of Practical Use

Anyone wanting to use a computer more effectively can use this book
for reference or for self-study. People with programming experience
can find information on specific topics throughout the book. To a large
extent, you can read the individual chapters in the book independently
of the others, although, in some cases, algorithms in one chapter make
use of methods from a previous chapter.

The orientation of the book is to study algorithms likely to be of
practical use. The book provides information about the tools of the
trade to the point that readers can confidently implement, debug, and
put algorithms to work to solve a problem or to provide functionality
in an application. Full implementations of the methods discussed are
included, as are descriptions of the operations of these programs on a
consistent set of examples.

Because we work with real code, rather than write pseudo-code,
you can put the programs to practical use quickly. Program listings
are available from the book’s home page. You can use these working
programs in many ways to help you study algorithms. Read them
to check your understanding of the details of an algorithm, or to
see one way to handle initializations, boundary conditions, and other
situations that pose programming challenges. Run them to see the
algorithms in action, to study performance empirically and check your
results against the tables in the book, or to try your own modifications.

Indeed, one practical application of the algorithms has been to
produce the hundreds of figures throughout the book. Many aigo-



rithms are brought to light on an intuitive level through the visual
dimension provided by these figures.

Characteristics of the algorithms and of the situations in which
they might be useful are discussed in detail. Connections to the analysis
of algorithms and theoretical computer science are developed in con-
text. When appropriate, empirical and analytic results are presented
to illustrate why certain algorithms are preferred. When interesting,
the relationship of the practical algorithms being discussed to purely
theoretical results is described. Specific information on performance
characteristics of algorithms and implementations is synthesized, en-
capsulated, and discussed throughout the book.

Programming Language

The programming language used for all of the implementations is Java.
The programs use a wide range of standard Java idioms, and the text
includes concise descriptions of each construct.

Mike Schidlowsky and I developed a style of Java programming
based on ADTs that we feel is an effective way to present the algorithms
and data structures as real programs. We have striven for elegant, com-
pact, efficient, and portable implementations. The style is consistent
whenever possible, so programs that are similar look similar.

A goal of this book is to present the algorithms in as simple and
direct a form as possible. For many of the algorithms, the similari-
ties remain regardless of which language is used: Dijkstra’s algorithm
(to pick one prominent example) is Dijkstra’s algorithm, whether ex-
pressed in Algol-60, Basic, Fortran, Smalltalk, Ada, Pascal, C, C++,
Modula-3, PostScript, Java, Python, or any of the countless other pro-
gramming languages and environments in which it has proved to be
an effective graph-processing method. On the one hand, our code is
informed by experience with implementing algorithms in these and
numerous other languages (C and C++ versions of this book are also
available); on the other hand, some of the properties of some of these
languages are informed by their designers’ experience with some of the
algorithms and data structures that we consider in this book. In the
end, we feel that the code presented in the book both precisely defines
the algorithms and is useful in practice.

vig
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timings throughout the book are provided as one context for compar-
ing algorithms and will vary depending on the virtual machine. As Java
environments evolve, programs will perform as fast as natively com-
piled code, but such optimizations will not change the performance of
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Notes on Exercises

Classifying exercises is an activity fraught with peril because readers
of a book such as this come to the material with various levels of
knowledge and experience. Nonetheless, guidance is appropriate, so
many of the exercises carry one of four annotations to help you decide
how to approach them.

Exercises that test your understanding of the material are marked
with an open triangle, as follows:

> 18.34 Consider the graph
3-7 1-4 7-8 0-56 5-2 3-8 2~9 0-6 4-9 2-6 6-4.

Draw its DFS tree and use the tree to find the graph’s bridges and

edge-connected components.
Most often, such exercises relate directly to examples in the text. They
should present no special difficulty, but working them might teach you
a fact or concept that may have eluded you when you read the text.

Exercises that add new and thought-provoking information to the

material are marked with an open circle, as follows:

019.106 Write a program that counts the number of different
possible results of topologically sorting a given DAG.

Such exercises encourage you to think about an important concept
that is related to the material in the text, or to answer a question that
may have occurred to you when you read the text. You may find it
worthwhile to read these exercises, even if you do not have the time to
work them through.

Exercises that are intended to challenge you are marked with a black
dot, as follows:

® 20.73 Describe how you would find the MST of a graph so large
that only V edges can fit into main memory at once.
Such exercises may require a substantial amount of time to complete,
depending on your experience. Generally, the most productive ap-
proach is to work on them in a few different sittings.
A few exercises that are extremely difficult (by comparison with
most others) are marked with two black dots, as follows:

®¢ 20.37 Develop a reasonable generator for random graphs with V
vertices and E edges such that the running time of the heap-based
PES implementation of Dijkstra’s algorithm is superlinear.

xitf
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These exercises are similar to questions that might be addressed in the
research literature, but the material in the book may prepare you to
enjoy trying to solve them (and perhaps succeeding).

The annotations are intended to be neutral with respect to your
programming and mathematical ability. Those exercises that require
expertise in programming or in mathematical analysis are self-evident.
All readers are encouraged to test their understanding of the algorithms
by implementing them. Still, an exercise such as this one is straight-
forward for a practicing programmer or a student in a programming
course, but may require substantial work for someone who has not
recently programmed:

® 17.74 Write a program that generates V random points in the

plane, then builds a network with edges (in both directions) con-

necting all pairs of points within a given distance d of one another

(see Program 3.20), setting each edge’s weight to the distance be-

tween the two points that it connects. Determine how to set d so

that the expected number of edges is E.
In a similar vein, all readers are encouraged to strive to appreciate
the analytic underpinnings of our knowledge about properties of al-
gorithms. Still, an exercise such as this one is straightforward for a
scientist or a student in a discrete mathematics course, but may require
substantial work for someone who has not recently done mathematical
analysis:

019.5 How many digraphs correspond to each undirected graph
with V vertices and E edges?

There are far too many exercises for you to read and assimilate
them all; my hope is that there are enough exercises here to stimulate
you to strive to come to a broader understanding on the topics that
interest you than you can glean by simply reading the text.
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