& BB

PEARSON
Addison

Wesley

Java

Algorithms in Java

Part 5

Graph Algorithms

et Sttt ttdd {
1B ICEOOENRINES
segtdesccosace —
*e
sses
ees 4
. e
: 'R
o #ovTeTites -..‘-':oooo“‘;ooaooo
. Soscsee
R bbb tttttt bttt
L ARBLLBEsce00e
see
L a4 .
“ Eded
e -— * e
‘ny
v
,.(satc .
- reees
- I L i. I
ssaphe -011
— 13
e _apew
ot sepé
b4 3 L o
* *-oeis 0
-y ihosowossesone

0760.1.0.
sebooheceee

(%) Robert Sedgewick

ise®
ense
St 46
T @ > o
XL) sedsheaccensed
—

r
sosas stuhooee | | “..
oon Sk pode seee | .o
St "U.02 B %0 12 1% .02 82 s
8 e 3 P> e f 88T
dresonensesneede o H 354 r
= o
s 2 EW%en L bd e b4
22223322823 333332 1
LY v ae® b
: * ¢
-- .nmn ooov““ > 4
L S > o B
L ﬂx 2 4.5 Poeevee
copbsaisioe ot
-y L3
i
Titeineese
. o0y
.

peede L4 .nﬂw
$223seiisinsiaqess
$esdssssstbessddecsisesodsses

chpeondasses

ssssooseveseleceser -

® eonp¢01000102

AR AR

e B H S

Java Bk (B3, % 24)

BIEE GEETRO

AERFE R
F -3

WA & A
AHENAT BF L. BRosxERRENRA, BEER. ARE. BANERN. REREU
R REA R ABRAT T BRIHE . AT AN A T 2R, T HEx 2 REF R
HTHRKMT, FEEE T EXRBEEE. £PRET 5SLMEXRNAR, NIRRT
REWMBREEE. AHAERLE. RREW, E6 THERE RSN RN RER .
English reprint edition copyright © 2003 by PEARSON EDUCATION ASIA LIMITED and TSINGHUA

UNIVERSITY PRESS.
Original English language title from Proprietor’s edition of the Work.
Original English language title: Algorithms in Java, Part 5: Graph Algorithms, Third Edition by Robert

Sedgewick, Copyright © 2004

All Rights Reserved.

Published by arrangement with the original publisher, Pearson Education, Inc., publishing as Pearson
Education, Inc.

This edition is authorized for sale and distribution only in the People’s Republic of China (excluding the
Special Administrative Region of Hong Kong, Macao SAR and Taiwan).

AL EIRR B Pearson Education #2431 A% MR HREAT.

For sale and distribution in the People’s Republic of China exclusively (except
Taiwan, Hong Kong SAR and Macao SAR). {XfRF 4 AREFEERN (FEIERE
FE. BIHETHERMPEESHER) HEXIT.

ERTBRBREERARZCS EF: 01-2004-2368

ABHENE Pearson Education (34 & L AREH) MAFFHIFE, THEEREHE.

BHAEMGBE (CIP) #iiF

Java Hik (33 /%, % 2 %) —EH k= Algorithms in Java (Third Edition), Part 5: Graph Algorithms/
(%) EHERE. SLOE. —Jbnl. HHEKZHBAE, 2003.9

CHEAME S

ISBN 7-302-07298-1

Lo L. [JAVAEE—EFE—#M % V.TP312

o RA B CIP B %7 (2003) 55 085255 &
H R & BHEREHEE b JUEEERERTARE
hitp://www. tup. com.cn #f #. 100084
B #l. 01062770175 ZEPAERE: 010-62776969
WERE: Evg
HEGIT: 7 AH A
DR & bR 4 it e
£ T &: =WilHEEITERAR
T &: WEBELEILRRITHR
& 185x230 EN¥k. 32.5
2004 4 A 1RE 2004 4 4 A 1 KEIRI
B ISBN 7-302-07298-1/TP - 5298
% 1~3000
#r:55.00 ¢

AR5 AAFE S IR A B T B T BB TP B TR M, 8 504 2 A IR
A%, BARBIE: (010)62770175-3103 5£,(010)62795704

Ft 2 3 &F H N

Preface

RAPHS AND GRAPH algorithms are pervasive in modern com-

puting applications. This book describes the most important
known methods for solving the graph-processing problems that arise
in practice. Its primary aim is to make these methods and the basic
principles behind them accessible to the growing number of people in
need of knowing them. The material is developed from first principles,
starting with basic information and working through classical methods
up through modern techniques that are still under development. Care-
fully chosen examples, detailed figures, and complete implementations
supplement thorough descriptions of algorithms and applications.

Algorithms

This book is the second of three volumes that are intended to survey
the most important computer algorithms in use today. The first volume
(Parts 1-4) covers fundamental concepts (Part 1), data structures (Part
2), sorting algorithms (Part 3), and searching algorithms (Part 4);
this volume (Part 5) covers graphs and graph algorithms; and the
(vet to be published) third volume (Parts 6-8) covers strings (Part
6), computational geometry (Part 7), and advanced algorithms and
applications (Part 8).

The books are useful as texts early in the computer science cur-
riculum, after students have acquired basic programming skills and
familiarity with computer systems, but before they have taken spe-
cialized courses in advanced areas of computer science or computer
applications. The books also are useful for self-study or as a refer-
ence for people engaged in the development of computer systems or
applications programs because they contain implementations of useful
algorithms and detailed information on these algorithms’ performance
characteristics. The broad perspective taken makes the series an ap-
propriate introduction to the field.

i

PREFACE

Together the three volumes comprise the Third Edition of a book
that has been widely used by students and programmers around the
world for many years. I have completely rewritten the text for this
edition, and I have added thousands of new exercises, hundreds of
new figures, dozens of new programs, and detailed commentary on all
the figures and programs. This new material provides both coverage of
new topics and fuller explanations of many of the classic algorithms. A
new emphasis on abstract data types throughout the books makes the
programs more broadly useful and relevant in modern object-oriented
programming environments. People who have read previous editions
will find a wealth of new information throughout; all readers will
find a wealth of pedagogical material that provides effective access to
essential concepts.

These books are not just for programmers and computer science
students. Everyone who uses a computer wants it to run faster or to
solve larger problems. The algorithms that we consider represent a
body of knowledge developed during the last 50 years that is the basis
for the efficient use of the computer for a broad variety of applications.
From N-body simulation problems in physics to genetic-sequencing
problems in molecular biology, the basic methods described here have
become essential in scientific research; and from database systems to
Internet search engines, they have become essential parts of modern
software systems. As the scope of computer applications becomes
more widespread, so grows the impact of basic algorithms. The goal
of this book is to serve as a resource so that students and professionals
can know and make intelligent use of graph algorithms as the need
arises in whatever computer application they might undertake.

Scope

This book, Algorithms in Java, Third Edition, Part 5: Graph Algo-
rithms, contains six chapters that cover graph properties and types,
graph search, directed graphs, minimal spanning trees, shortest paths,
and networks. The descriptions here are intended to give readers an
understanding of the basic properties of as broad a range of funda-
mental graph algorithms as possible.

You will most appreciate the material here if you have had a
course covering basic principles of algorithm design and analysis and

programming experience in a high-level language such as Java, C++,
or C. Algorithms in Java, Third Edition, Parts 1-4, is certainly ade-
quate preparation. This volume assumes basic knowledge about ar-
rays, linked lists, and abstract data types (ADTs) and makes use of
priority-queue, symbol-table, and union-find ADTs—all of which are
described in detail in Parts 1-4 (and in many other introductory texts
on algorithms and data structures).

Basic properties of graphs and graph algorithms are developed
from first principles, but full understanding often can lead to deep and
difficult mathematics. Although the discussion of advanced mathe-
matical concepts is brief, general, and descriptive, you certainly need a
higher level of mathematical maturity to appreciate graph algorithms
than you do for the topics in Parts 1—4. Still, readers at various levels of
mathematical maturity will be able to profit from this book. The topic
dictates this approach: Some elementary graph algorithms that should
be understood and used by everyone differ only slightly from some
advanced algorithms that are not understood by anyone. The primary
intent here is to place important algorithms in context with other meth-
ods throughout the book, not to teach all of the mathematical material.
But the rigorous treatment demanded by good mathematics often leads
us to good programs, so I have tried to provide a balance between the
formal treatment favored by theoreticians and the coverage needed by
practitioners, without sacrificing rigor.

Use in the Curriculum

There is a great deal of flexibility in how the material here can be
taught, depending on the taste of the instructor and the preparation
of the students. There is sufficient coverage of basic material for the
book to be used to teach data structures to beginners, and there is
sufficient detail and coverage of advanced material for the book to
be used to teach the design and analysis of algorithms to upper-level
students. Some instructors may wish to emphasize implementations
and practical concerns; others may wish to emphasize analysis and
theoretical concepts.

For a more comprehensive course, this book is also available in
a special bundle with Parts 1-4; thereby instructors can cover funda-

vi

PREFACE

mentals, data structures, sorting, searching, and graph algorithms in
one consistent style.

The exercises—nearly all of which are new to this third edition—
fall into several types. Some are intended to test understanding of ma-
terial in the text, and simply ask readers to work through an example
or to apply concepts described in the text. Others involve implement-
ing and putting together the algorithms, or running empirical studies
to compare variants of the algorithms and to learn their properties.
Still others are a repository for important information at a level of
detail that is not appropriate for the text. Reading and thinking about
the exercises will pay dividends for every reader.

Algorithms of Practical Use

Anyone wanting to use a computer more effectively can use this book
for reference or for self-study. People with programming experience
can find information on specific topics throughout the book. To a large
extent, you can read the individual chapters in the book independently
of the others, although, in some cases, algorithms in one chapter make
use of methods from a previous chapter.

The orientation of the book is to study algorithms likely to be of
practical use. The book provides information about the tools of the
trade to the point that readers can confidently implement, debug, and
put algorithms to work to solve a problem or to provide functionality
in an application. Full implementations of the methods discussed are
included, as are descriptions of the operations of these programs on a
consistent set of examples.

Because we work with real code, rather than write pseudo-code,
you can put the programs to practical use quickly. Program listings
are available from the book’s home page. You can use these working
programs in many ways to help you study algorithms. Read them
to check your understanding of the details of an algorithm, or to
see one way to handle initializations, boundary conditions, and other
situations that pose programming challenges. Run them to see the
algorithms in action, to study performance empirically and check your
results against the tables in the book, or to try your own modifications.

Indeed, one practical application of the algorithms has been to
produce the hundreds of figures throughout the book. Many aigo-

rithms are brought to light on an intuitive level through the visual
dimension provided by these figures.

Characteristics of the algorithms and of the situations in which
they might be useful are discussed in detail. Connections to the analysis
of algorithms and theoretical computer science are developed in con-
text. When appropriate, empirical and analytic results are presented
to illustrate why certain algorithms are preferred. When interesting,
the relationship of the practical algorithms being discussed to purely
theoretical results is described. Specific information on performance
characteristics of algorithms and implementations is synthesized, en-
capsulated, and discussed throughout the book.

Programming Language

The programming language used for all of the implementations is Java.
The programs use a wide range of standard Java idioms, and the text
includes concise descriptions of each construct.

Mike Schidlowsky and I developed a style of Java programming
based on ADTs that we feel is an effective way to present the algorithms
and data structures as real programs. We have striven for elegant, com-
pact, efficient, and portable implementations. The style is consistent
whenever possible, so programs that are similar look similar.

A goal of this book is to present the algorithms in as simple and
direct a form as possible. For many of the algorithms, the similari-
ties remain regardless of which language is used: Dijkstra’s algorithm
(to pick one prominent example) is Dijkstra’s algorithm, whether ex-
pressed in Algol-60, Basic, Fortran, Smalltalk, Ada, Pascal, C, C++,
Modula-3, PostScript, Java, Python, or any of the countless other pro-
gramming languages and environments in which it has proved to be
an effective graph-processing method. On the one hand, our code is
informed by experience with implementing algorithms in these and
numerous other languages (C and C++ versions of this book are also
available); on the other hand, some of the properties of some of these
languages are informed by their designers’ experience with some of the
algorithms and data structures that we consider in this book. In the
end, we feel that the code presented in the book both precisely defines
the algorithms and is useful in practice.

vig

viif

PREFACE

Acknowledgments

Many people gave me helpful feedback on earlier versions of this
book. In particular, thousands of students at Princeton and Brown
have suffered through preliminary drafts over the years. Special thanks
are due to Trina Avery and Tom Freeman for their help in producing
the first edition; to Janet Incerpi for her creativity and ingenuity in
persuading our early and primitive digital computerized typesetting
hardware and software to produce the first edition; to Marc Brown for
his part in the algorithm visualization research that was the genesis of
so many of the figures in the book; to Dave Hanson and Andrew Appel
for their willingness to answer all of my questions about programming
languages; and to Kevin Wayne, for patiently answering my basic
questions about networks. Kevin urged me to include the network
simplex algorithm in this book, but I was not persuaded that it would
be possible to do so until I saw a presentation by Ulrich Lauther at
Dagstuhl of the ideas on which the implementations in Chapter 22 are
based. I would also like to thank the many readers who have provided
me with comments about various editions, including Guy Almes, Jon
Bentley, Marc Brown, Jay Gischer, Allan Heydon, Kennedy Lemke,
Udi Manber, Michael Quinn, Dana Richards, John Reif, M. Rosenfeld,
Stephen Seidman, and William Ward.

To produce this new edition, I have had the pleasure of working
with Peter Gordon and Helen Goldstein at Addison-Wesley, who have
patiently shepherded this project as it has evolved. It has also been
my pleasure to work with several other members of the professional
staff at Addison-Wesley. The nature of this project made the book a
somewhat unusual challenge for many of them, and I much appreciate
their forbearance.

I have gained three new mentors while writing this book and par-
ticularly want to express my appreciation to them. First, Steve Summit
carefully checked early versions of the manuscript on a technical level
and provided me with literally thousands of detailed comments, partic-
ularly on the programs. Steve clearly understood my goal of providing
elegant, efficient, and effective implementations, and his comments
not only helped me to provide a measure of consistency across the
implementations, but also helped me to improve many of them sub-
stantially. Second, Lyn Dupré also provided me with thousands of de-

tailed comments on the manuscript, which were invaluable in helping
me not only to correct and avoid grammatical errors, but also—more
important—to find a consistent and coherent writing style that helps
bind together the daunting mass of technical material here. Third,
Chris Van Wyk, in a long series of spirited electronic mail exchanges,
patiently defended the basic precepts of object-oriented programming
and helped me develop a style of coding that exhibits the algorithms
with clarity and precision while still taking advantage of what object-
oriented programming has to offer. The approach that we developed
for the C++ version of this book has substantially influenced the Java
code here and will certainly influence future volumes in both languages
(and C as well). I am extremely grateful for the opportunity to learn
from Steve, Lyn, and Chris—their input was vital in the development
of this book.

Much of what I have written here I have learned from the teaching
and writings of Don Knuth, my advisor at Stanford. Although Don had
no direct influence on this work, his presence may be felt in the book,
for it was he who put the study of algorithms on the scientific footing
that makes a work such as this possible. My friend and colleague
Philippe Flajolet, who has been a major force in the development of
the analysis of algorithms as a mature research area, has had a similar
influence on this work.

I am deeply thankful for the support of Princeton University,
Brown University, and the Institut National de Recherche en Informa-
tique et Automatique (INRIA), where I did most of the work on the
book; and of the Institute for Defense Analyses and the Xerox Palo
Alto Research Center, where I did some work on the book while visit-
ing. Many parts of the book are dependent on research that has been
generously supported by the National Science Foundation and the Of-
fice of Naval Research. Finally, I thank Bill Bowen, Aaron Lemonick,
and Neil Rudenstine for their support in building an academic envi-
ronment at Princeton in which I was able to prepare this book, despite
my numerous other responsibilities.

Robert Sedgewick

Marly-le-Roi, France, 1983

Princeton, New Jersey, 1990, 1992
Jamestown, Rbhode Island, 1997, 2001
Princeton, New Jersey, 1998, 2003

ix

PREFACE

Java Consultant’s Preface

In the past decade, Java has become the language of choice for a
variety of applications. But Java developers have found themselves
repeatedly referring to references such as Sedgewick’s Algorithms in C
for solutions to common programming problems. There has long been
an empty space on the bookshelf for a comparable reference work for
Java; this series of books is here to fill that space.

We wrote the sample programs as utility methods to be used in
a variety of contexts. To that end, we did not use the Java package
mechanism. To focus on the algorithms at hand (and to expose the
algorithmic basis of many fundamental library classes), we avoided
the standard Java library in favor of more fundamental types. Proper
error checking and other defensive practices would both substantially
increase the amount of code and distract the reader from the core
algorithms. Developers should introduce such code when using the
programs in larger applications.

Although the algorithms we present are language independent,
we have paid close attention to Java-specific performance issues. The
timings throughout the book are provided as one context for compar-
ing algorithms and will vary depending on the virtual machine. As Java
environments evolve, programs will perform as fast as natively com-
piled code, but such optimizations will not change the performance of
algorithms relative to one another. We provide the timings as a useful
reference for such comparisons.

I would like to thank Mike Zamansky, for his mentorship and
devotion to the teaching of computer science, and Daniel Chaskes,
Jason Sanders, and James Percy, for their unwavering support. I would
also like to thank my family for their support and for the computer
that bore my first programs. Bringing together Java with the classic
algorithms of computer science was an exciting endeavor for which I
am very grateful. Thank you, Bob, for the opportunity to do so.

Michael Schidlowsky
Oakland Gardens, New York, 2003

Notes on Exercises

Classifying exercises is an activity fraught with peril because readers
of a book such as this come to the material with various levels of
knowledge and experience. Nonetheless, guidance is appropriate, so
many of the exercises carry one of four annotations to help you decide
how to approach them.

Exercises that test your understanding of the material are marked
with an open triangle, as follows:

> 18.34 Consider the graph
3-7 1-4 7-8 0-56 5-2 3-8 2~9 0-6 4-9 2-6 6-4.

Draw its DFS tree and use the tree to find the graph’s bridges and

edge-connected components.
Most often, such exercises relate directly to examples in the text. They
should present no special difficulty, but working them might teach you
a fact or concept that may have eluded you when you read the text.

Exercises that add new and thought-provoking information to the

material are marked with an open circle, as follows:

019.106 Write a program that counts the number of different
possible results of topologically sorting a given DAG.

Such exercises encourage you to think about an important concept
that is related to the material in the text, or to answer a question that
may have occurred to you when you read the text. You may find it
worthwhile to read these exercises, even if you do not have the time to
work them through.

Exercises that are intended to challenge you are marked with a black
dot, as follows:

® 20.73 Describe how you would find the MST of a graph so large
that only V edges can fit into main memory at once.
Such exercises may require a substantial amount of time to complete,
depending on your experience. Generally, the most productive ap-
proach is to work on them in a few different sittings.
A few exercises that are extremely difficult (by comparison with
most others) are marked with two black dots, as follows:

®¢ 20.37 Develop a reasonable generator for random graphs with V
vertices and E edges such that the running time of the heap-based
PES implementation of Dijkstra’s algorithm is superlinear.

xitf

xiv

These exercises are similar to questions that might be addressed in the
research literature, but the material in the book may prepare you to
enjoy trying to solve them (and perhaps succeeding).

The annotations are intended to be neutral with respect to your
programming and mathematical ability. Those exercises that require
expertise in programming or in mathematical analysis are self-evident.
All readers are encouraged to test their understanding of the algorithms
by implementing them. Still, an exercise such as this one is straight-
forward for a practicing programmer or a student in a programming
course, but may require substantial work for someone who has not
recently programmed:

® 17.74 Write a program that generates V random points in the

plane, then builds a network with edges (in both directions) con-

necting all pairs of points within a given distance d of one another

(see Program 3.20), setting each edge’s weight to the distance be-

tween the two points that it connects. Determine how to set d so

that the expected number of edges is E.
In a similar vein, all readers are encouraged to strive to appreciate
the analytic underpinnings of our knowledge about properties of al-
gorithms. Still, an exercise such as this one is straightforward for a
scientist or a student in a discrete mathematics course, but may require
substantial work for someone who has not recently done mathematical
analysis:

019.5 How many digraphs correspond to each undirected graph
with V vertices and E edges?

There are far too many exercises for you to read and assimilate
them all; my hope is that there are enough exercises here to stimulate
you to strive to come to a broader understanding on the topics that
interest you than you can glean by simply reading the text.

Contents

Graph Algorithms

Chapter 17. Graph Properties and Types
17.1 Glossary - 7

17.2 Graph ADT - 16

17.3 Adjacency-Matrix Representation - 25
17.4 Adjacency-Lists Representation - 31
17.5 Variations, Extensions, and Costs - 36
17.6 Graph Generators - 46

17.7 Simple, Euler, and Hamilton Paths - 57
17.8 Graph-Processing Problems - 70

Chapter 18. Graph Search
18.1 Exploring a Maze - 82
18.2 Depth-First Search - 87
18.3 Graph-Search ADT Methods - 91
18.4 Properties of DFS Forests - 97

xvi

TABLE OF CONTENTS

18.5 DFS Algorithms - 105

18.6 Separability and Biconnectivity - 112
18.7 Breadth-First Search - 121

18.8 Generalized Graph Search - 131
18.9 Analysis of Graph Algorithms - 140

Chapter 19. Digraphs and DAGs

19.1 Glossary and Rules of the Game - 152

19.2 Anatomy of DFS in Digraphs - 160

19.3 Reachability and Transitive Closure - 169

19.4 Equivalence Relations and Partial Orders - 182
19.5 DAGs - 186

19.6 Topological Sorting - 191

19.7 Reachability in DAGs - 202

19.8 Strong Components in Digraphs - 205

19.9 Transitive Closure Revisited - 217

19.10 Perspective - 222

Chapter 20. Minimum Spanning Trees

20.1 Representations - 230

20.2 Underlying Principles of MST Algorithms - 240
20.3 Prim’s Algorithm and Priority-First Search - 247
20.4 Kruskal’s Algorithm - 258

20.5 Boruvka’s Algorithm - 264

20.6 Comparisons and Improvements - 268

20.7 Euclidean MST - 274

149

227

Chapter 21. Shortest Paths 277
21.1 Underlying Principles - 285
21.2 Dijkstra’s Algorithm - 293
21.3 All-Pairs Shortest Paths - 304
21.4 Shortest Paths in Acyclic Networks - 313
21.5 Euclidean Networks - 322
21.6 Reduction - 328
21.7 Negative Weights - 345
21.8 Perspective - 363

Chapter 22. Network Flow 367
22.1 Flow Networks - 373

22.2 Augmenting-Path Maxflow Algorithms - 382
22.3 Preflow-Push Maxflow Algorithms - 410
22.4 Maxflow Reductions - 425

22.5 Mincost Flows - 443

22.6 Network Simplex Algorithm - 453

22.7 Mincost-Flow Reductions - 472

22.8 Perspective - 482

References for Part Five 487

Index 489

xvii

Graph Algorithms

