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PREFACE

A Volterra integral equation of the first kind can be written

in the form

X
(0.1) I k(x,t) £(t) dt = g(x),
a

where a > -, It is known that for certain cases this equation
can be converted into a Volterra equation of the second kind by
differentiation. It is our purpose to consider alternative methods
of solving the equations of the first kind where the kernels are
given special functions, since quite often the requirements for
conversion to equations of the second kind are not satisfied. In
particular, we coﬁcentrate on a survey of the kernels and of the
methods for which explicit integral (or differential) inversion
formulas can be obtained.

In Chapter 1 we give a discussion of those kernels which are
available in the literature with references to the lengthy bibliography
which has been collected. Chapter 2 consists of a ﬁiscussion of
relations between various forms of the equations, a discussion of
the question of uniqueness of solutions, taking into consideration
the Theorem of Titchmarsh and the work of Gesztelyi, and a discussion
of the related integral transformations and fractional integrals.

A description of each of several methods is given in Chapter 3 with
an explicit, simple example for the illustration of each method.
Further, in Chapter 4 we include some miscellaneo#p‘rgsults and mention

various problems which may be worthy'of further investigation.
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Some notations which we use for special functions appear in the
Appendix, and, in general, these notations are the ones used in
"Higher Transcendental Functions" by A. Erdélyi et al. [41]. We
shall refer often to "Tables of Integral Transforms", by A. Erdélyi
et al. [42] for integrals. In both of these cases we use abbreviations
such as [41:2.1(2)] to refer to the reference numbered 41, chapter
2, section 1, formula (2).

Integral transformations are mentioned as methods of solving
integral equations of the first kind in a number of books: for example,
R.V. Churchill [27], V.A. Ditkin and A.P. Prudnikov [30], Gustav
Doetsch [32,34], Balth. van der Pol and H. Bremmer [80!, Ian N. Sneddon
[115, 117], and E.C. Titchmarsh [140]; the operational calculus of
Mikusifiski is used by Lothar Berg [1] and Arthur Erdélyi [37]. For
discussions of convolutions and their properties, besides the alfgady
listed texts, one can refer to Gustav Doetsch [33] for a lengthy
discussion of the simple convolution and to Istvén Fenyd [44] and
to E. Gesztelyi [48] for generalizatioqs. J.G. Mikusifiski and Cz.
Ryll-Nardzewski [72] give a table relating the class to which the
convolution product belongs to the classes from which the factors
come. :

For lack of a brief common terminology to describe the method
in which a key integral involving two kernels k and kl is computed
and then a direct verification of the proposed solution is made by
substitution into the original equation, we introduce the expression
"resolvent kernel method". Further discussion and an example of

this method is contained in section 2 of Chapter 3.



Although we have restricted our discussion mostly to forms
_ related to equation (0.1), we do include a few cases of somewhat
related equations of the first kind for which the interval is of
the form (x,»); the cases of other equations of the first kind
where the intervals for integration are (a,b) or (-=, 4+=)
are quite different problems. Since a large variety of physical
problems lead to convolution integral equations with special function
kernels, it is hoped that the types of solutions explored here will
be useful in the disciplines of applied mathematics, theoretical
and quantum mechanics, and mathematical physics.

The collaboration on this project was initiated, and a pre-
liminary draft ﬁas prepared, during the academic year 1972-73 while
the second author was at the University of Victoria on sabbatical

leave from the University of Wyoming. This monograph has since been

revised and updated a number of times.

Victoria H. M. Srivastava
and
Guelph : R. G. Buschman

June 1976



CHAPTER 1

LITERATURE ON SPECIAL FUNCTION KERNELS
1.1 Algebraic kernels

The books mentioned in the introduction as well as many of the

papers which will be mentioned in this chapter treat Abel's equation,
* -a

(1,351 [ (x-t) £(t) dt = g(x), 0 <ac<1,
a

as an example in view of its simplicity and also because it follows
as a special case of other kernels. This equation has a long history
which we have not specifically pursued. The inversions of certain
fractional integrals are definitely related to the problem of the
solution of Abel's equation or its generalizations: see, for example,
L.S. Bosanquet [10], A. Erdélyi [35, 36], H. Kober [$3], J.S. Lowndes
[68], and C.V.L. Smith [114]. Both intervals (a, x) and (x, ®)
have been considered in the literature.

Certain other equations can be reduced to Abel's equation. For

example, the equation
- -a

1.1.2) J (i) - E(D)) 2 £(t) dt = g0, 0<ac<1,
a

can sometimes be reduced to an Abel equation by a simple change of
variables; see J. Burlak [13], A.N. Hovanskii [56], R.P. Srivastav

[121], and E. Gesztelyi [48].



The related problem involving the Hadamard finite part of a
divergent integral when a :’1 is considered by T.K. Boehme [8],
P.L. Butzer [21, 22], Erdélyi [37], Fritz Riths [90], and Klaus
Wiener [145, 146] and a series of related papers.

For integral transformation and operational calculus techniques
for algebraic kernels see also Butzer [20], Ky Fan [43], C. Fox [46],
Ram P. Kanwal [61], and Sneddon [116].

Although we are not considering numerical methods here, a recent

paper by Richard Weiss [142] indicates references in that direction.

1.2 Exponential, logarithmic, and trigonometric kermels

Some kernels involving the exponential function, for which the
technique of Laplace transforms is applied, have been treatea by
Kanwal [61] and by D.O. Reudink [88]. The general problem of finding
inversion integrals which involve the same kernel function was studied
by Reudink [loc. cit.]; Fenyd [45] also treated this problem of Reudink
by means of Mikusifiski operators. Kernels which involve logarithms
were discussed by S. Colombo [29], Ky Fan [43], and L. Poli [81], and
for Hadamard finite parts by Wiener [145]. Trigonometric and
hyperbolic functions as kernels are included in the works of Butzer
[20], Erdélyi [37], Kanwal [61], van der Pol and Bremmer [80],

Reudink [88], K.C. Rusia [98], and Sneddon [115,-117]. Generalized
hyperbolic and trigonometric functions [41:18.2)] were used as kernels

by P.L. Bharatiya [4].



1.3 Chebyshev polynomials

Much of the recent interest in these equations seems to have

been initiated by the papers of Ta Li [64, 65] who solved
) 2 2 -1/2 .

(1.9%9) J [t -x ] T (t/x) £(t) dt = g(x),
X

in which Tn(x) denotes a Chebyshev polynomial of the first kind of
degree n in x. This equation arose from problems in aerodynamics.
He used the resolvent kernel method and he needed to evaluate the

key integral involving the product of kernels,

v [tz-xz]-l/z

X

Tn(t/x)[vz-tz]—l/z

(1.3.2) J T CE/v) dt.
In part, the effort of further research has been directed toward
finding simpler methods of evaluating such integrals when they are
not already tabulated, as well as toward finding simpler methods of
discovering solution forms involving other kernels. Other efforts

- have been made in obtaining alternative methods for solving the
equation; Sneddon [116, 117] has used the Mellin transformation and
D.V. Widder [144] used the Laplace transformation after making a change
of variables. Dietrich Suschowk [138] considered a related equation
using a formula for Tn(x), manipulations, and-a limiting process.

In the case of the Chebyshev kernels, as well as in a number of

other cases which follow, the solution could be obtained by specializing

the solution of an integral equation with a more general function as

the kernel.
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1.4 Legendre polynomials and functions

In a number of papers kernels which involve Legendre polynomials

have been considered; for example, the simple equation
1

(1.4.1) J Pn(t/x) £(t) dt = g(x),
x

was solved by Buschman [14] using the resolvent kernel method, by
Erdélyi [38] using Rodrigues' formula followed by successive integra’ ‘ons
and differentiations, by Sneddon [116] using the Mellin transformation,
and by Widder [144] using the Laplace transformation. A similar
equation with a kernel involving generalized Legendre polynomials

which are closely related to special cases of Jacobi polynomials was

treated by R.P. Singh [112]. The equation
x

(1.4.2) J Pn[cos a(x-t)) £(t) dt = g(x),
0

and its solution appeared in the list of van der Pol and Bremmer [80]
for o =1 and is also considered by B.R. Bhonsle [6]. Mikiharu
Terada [139] applied Miku;:a!ki operators to a similar equation with
u
kernel Pn(e.]5
A quite different method using partial differential equations

was invoked by A.G. Mackie [69] to solve the equations
x

(1,4.3) J Pn(t/x) f(t) dt = g(x)
0

and
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X
(1.4.4) [ P (x/t) f(t) dt = g(x).
. o "

The first of these equations was also treated in the series of three
papers, R.A. Sack [1Q0], L1.C. Chambers and R.A. Sack [25], and L1.C.
Chambers [24]. Equations of this type have quite different properties
from those mentioned in the preceding paragraph; the solutions need
not be unique because of orthogonality relations. This is discussed
in Chapter 2.

For equations with kernels involving Legendre functions;

specifically

(1.4.5) jl (cz-xz)m A (t/x) £(t) dt = g(x)
x

and

(1.4.6) E [xz-:z)m BM(E/x) £(v) dt = g(x),

with Re()) < 1, solutions were given by Buschman [16] by means of

the resolvent kernel method. Erdélyi [ 39, 152] used the method of
fractional integration to factor the operat;)r into a product of two
fractional integrals and hence obtained the solution for the range

of integration (a, x); further, in the second paper, he treated

the problem of Hadamard finite parts. The Mellin transform was applied
by Sneddon [116] to solve the equation for the range (x, ®) with

x > 0. Solutions can be obtained as special cases of 2F1-kemele

such as has been done recently by Tilak Raj Prabhakar [ 86].
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1.5 Gegenbauer and Jacobi polynomials

Solutions to equations of the form
1 A=1/2
(1.5:1) J ‘[tz-x2) Cz(t/x) f(t) dt = g(x),
X

which involve Gegenbauer polynomials in the kernel, were given by
Buschman [15] for a special case, by Theodore P. Higgins [53], and
by K.N. Srivastava [129] (where the corrected results of [127] appear);
the resolvent kernel method was used. Sneddon [116] used the Mellin
transformation and Prabhakar [86] liste& the solution among special
cases of ;hg ZFI-kernel. :

In an earlier paper K.N. Srivastava [126] applied the Hankel
transformation to obtain solutions to similar equations where the
ranges of integration are (0, x) and (x, ®).

_Equations involving the Jacobi polynomials in the form

(1.5.2) r (:2-:2)" pit (2e%/x2-1) £¢v) at = g0,
g x

have been studied by K.C. Rusia [91] and K.N. Srivastava [128, 130,
132, 133], both using resolvent kermels. On the other hand, Rusia [95]
used Rodrigues' formula for the case in which a 1s-a non-negative
integer, and in [97] he applied the Hankel transformation. Prabhakar
[86] listed the equation among the special cases of zFl—kernels.'

C. Singh [110] used the fractional derivative form of Rodrigues'

formula to solve the equations with the kernels involving

P:a’s)(l-zx/:); Bhonsle [7] considered kernels involving Psa’s)[l-ZxZ/t?].



12

Jacobi functions occurred in the kernels of K.N. Srivastava [134]
where the ranges of integration (0, x) and (x, ») were considered

and the Hankel transformation applied.

1.6 Laguerre and Hermite polynomials

In these cases the equation is taken in the form of a Laplace

convolution. For the Laguerre polynomial kernels we have the equation
* b(x-t) a _(a)

(1.6.1) J e (x~t) Ln (x-t) f(t) dt = g(x),
0

which was treated by Rusia [92]. For the case in which o 1is a
non-negative integer Rusia [95] used Rodrigues' formula. For the case
b = 0 Buschman [17] used Mikusifiski operators, P.R. Khandekar [62] :
used the Laplace transformation, and K.N. Srivastava [135] used the
resolvent kernel method. For o =b = 0 Hisachi Choda and Marie
Echigo [26] used Mikusifiski operators and van der Pol and Bremmer
[80] and Widder [143] used the Laplace transformation.

M.T. Shah [114] applied the resolvent kernel ﬁethod and Laplace

transforms to the equation

f£(t) dt = g(x), g

a(x_t)1/2)

> 4
(1.6.2) I (x—:)'”2 n2n[

0

which involves Hermite polynomials. Notice that since
2n -
(1.6.3) CH, @ = (D" 2w 1YY,
n n
Shah's solution of (1.6.2) is evidently contained in that of the well-
treated equation (1.6.1) with a = -1/2 and b = 0.
Prabhakar [82] obtained Laguerre and Hermite kernels as special

cases of his results on confluent hypergeometric functions.



