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Prefaces

Preface to the English Edition

An entire generation of mathematicians has grown up during the time be-
tween the appearance of the first edition of this textbook and the publication
of the fourth edition, a translation of which is before you. The book is famil-
iar to many people, who either attended the lectures on which it is based or
studied out of it, and who now teach others in universities all over the world.
I am glad that it has become accessible to English-speaking readers.

This textbook consists of two parts. It is aimed primarily at university
students and teachers specializing in mathematics and natural sciences, and
at all those who wish to see both the rigorous mathematical theory and
examples of its effective use in the solution of real problems of natural science.

The textbook exposes classical analysis as it is today, as an integral part
of Mathematics in its interrelations with other modern mathematical courses
such as algebra, differential geometry, differential equations, complex and
functional analysis. .

The two chapters with which this second book begins, summarize and
explain in a general form essentially all most important results of the first
volume concerning continuous and differentiable functions, as well as differ-
ential calculus. The presence of these two chapters makes the second book
formally independent of the first one. This assumes, however, that the reader
is sufficiently well prepared to get by without introductory considerations of
the first part, which preceded the resulting formalism discussed here. This
second book, containing both the differential calculus in its generalized form
and integral calculus of functions of several variables, developed up to the
general formula of Newton-Leibniz~Stokes, thus acquires a certain unity and
becomes more self-contained.

More complete information on the textbook and some recommendations
for its use in teaching can be found in the translations of the prefaces to the
first and second Russian editions.

Moscow, 2003 _ V. Zorich
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Preface to the Fourth Russian Edition

In the fourth edition all misprints that the author is aware of have been
corrected.

Moscow, 2002 V. Zorich

Preface to the Third Russian Edition

The third edition differs from the second only in local corrections (although
in one case it also involves the correction of a proof) and in the addition of
some problems that seem to me to be useful.

Moscow, 2001 V. Zorich

Preface to the Second Russian Edition

In addition to the correction of all the misprints in the first edition of which
the author is aware, the differences between the second edition and the first
edition of this book are mainly the following. Certain sections on individual
topics — for example, Fourier series and the Fourier transform — have been
recast (for the better, I hope). We have included several new examples of
applications and new substantive problems relating to various parts of the
theory and sometimes significantly extending it. Test questions are given, as
well as questions and problems from the midterm examinations. The list of
further readings has been expanded.

Further information on the material and some characteristics of this sec-
ond part of the course are given below in the preface to the first edition.

Moscow, 1998 V. Zorich

Preface to the First Russian Edition

The preface to the first part contained a rather detailed characterization of
the course as a whole, and hence I confine myself here to some remarks on
the content of the second part only.

The basic material of the present volume consists on the one hand of
multiple integrals and line and surface integrals, leading to the generalized
Stokes’ formula and some examples of its application, and on the other hand
the machinery of series and integrals depending on a parameter, including



Preface to the First Russian Edition VII

Fourier series, the Fourier transform, and the presentation of asymptotic
expansions.

Thus, this Part 2 basically conforms to the curriculum of the second year
of study in the mathematics departments of universities. :

So as not to impose rigid restrictions on the order of presentation of these
two major topics during the two semesters, I have discussed them practically
independently of each other.

Chapters 9 and 10, with which this book begins, reproduce in compressed
and generalized form, essentially all of the most important results that were
obtained in the first part concerning continuous and differentiable functions.
These chapters are starred and written as an appendix to Part 1. This ap-
pendix contains, however, many concepts that play a role in any exposition
of analysis to mathematicians. The presence of these two chapters makes the
second book formally independent of the first, provided the reader is suffi-
ciently well prepared to get by without the numerous examples and introduc-
tory considerations that, in the first part, preceded the formalism discussed
here.

The main new material in the book, which is devoted to the integral
calculus of several variables, begins in Chapter 11. One who has completed
the first part may begin the second part of the course at this point without
any loss of continuity in the ideas.

The language of differential forms is explained and used in the discussion
of the theory of line and surface integrals. All the basic geometric concepts
and analytic constructions that later form a scale of abstract definitions lead-
ing to the generalized Stokes’ formula are first introduced by using elementary
material. :

Chapter 15 is devoted to a similar summary exposition of the integration
of differential forms on manifolds. I regard this chapter as a very desirable
and systematizing supplement to what was expounded and explained using
specific objects in the mandatory Chapters 11-14.

The section on series and integrals depending on a parameter gives, along
with the traditional material, some elementary information on asymptotic
series and asymptotics of integrals (Chap. 19), since, due to its effectiveness,
the latter is an unquestionably useful piece of analytic machinery.

For convenience in orientation, ancillary material or sections that may be
omitted on a first reading, are starred.

The numbering of the chapters and figures in this book continues the
numbering of the first part.

Biographical information is given here only for those scholars not men-
tioned in the first part.

As before, for the convenience of the reader, and to shorten the text, the
end of a proof is denoted by 0. Where convenient, definitions are introduced
by the special symbols := or =: (equality by definition), in which the colon
stands on the side of the object being defined. '



VIII  Prefaces

Continuing the tradition of Part 1, a great deal of attention has been
paid to both the lucidity and logical clarity of the mathematical construc-
tions themselves and the demonstration of substantive applications in natural
science for the theory developed.

Moscow, 1982 V. Zorich
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9 *Continuous Mappings (General Theory)

In this chapter we shall generalize the properties of continuous mappings
established earlier for numerical-valued functions and mappings of the type
f :R™ — R"™ and discuss them from a unified point of view. In the process
we shall introduce a number of simple, yet important concepts that are used
everywhere in mathematics.

9.1 Metric Spaces

9.1.1 Definition and Examples

Definition 1. A set X is said to be endowed with a metric or a metric space
structure or to be a metric space if a function

d: XxX >R (9.1)

is exhibited satisfying the following conditions:
a) d(z1,72) = 0 & 71 = 72,
b) d(z1,z2) = d(z2,x2) (symmetry),
c) d(zx1,r3) < d(z1,2) + d(x2,z3) (the triangle inequality),

where z;,x2, 3 are arbitrary elements of X.

In that case, the function (9.1) is called a metric or distance on X.

Thus a metric space is a pair (X,d) consisting of a set X and a metric
defined on it.

In accordance with geometric terminology the elements of X are called
points.

We remark that if we set 3 = z; in the triangle inequality and take
account of conditions a) and b) in the definition of a metric, we find that

0 S d(xlvxil) )

that is, a distance satisfying axioms a), b), and c) is nonnegative.



2 9 *Continuous Mappings (General Theory)

Let us now consider some examples.

Ezample 1. The set R of real numbers becomes a metric space if we set
d(xy,x2) = |xa — 21| for any two numbers z; and z2, as we have always done.

Ezample 2. Other metrics can also be introduced on R. A trivial metric, for
example, is the discrete metric in which the distance between any two distinct

points is 1.
The following metric on R is much more substantive. Let z »— f(z) be
a nonnegative function defined for x > 0 and vanishing for £ = 0. If this

function is strictly convex upward, then, setting
d(z1,72) = f(|z1 - z2|) (9.2)

for points r;,x; € R, we obtain a metric on R.

Axioms a) and b) obviously hold here, and the triangle inequality follows
from the easily verified fact that f is strictly monotonic and satisfies the
following inequalities for 0 < a < b:

fla+b) - f(b) < f(a) - £(0) = f(a).

In particular, one could set d(z;,z2) = +/[z; — 2| or d(z;,22) =
I—'ﬁ‘;:—f’;';[. In the latter case the distance between any two points of the line
is less than 1.

Ezrample 3. Besides the traditional distance

n

D lzi — a2 (9-3)

i=1

d(z),x2) =

between points z; = (zi,...,27) and z3 = (z},...,27) in R™, one can also
introduce the distance

n ) ] 1/p
dotena) = (Llet -at) (9.4

i=1

where p > 1. The validity of the triangle inequality for the function (9.4)
follows from Minkowski’s inequality (see Subsect. 5.4.2).

Ezample 4. When we encounter a word with incorrect letters while reading a
text, we can reconstruct the word without too much trouble by correcting the
errors, provided the number of errors is not too large. However, correcting the
error and obtaining the word is an operation that is sometimes ambiguous.
For that reason, other conditions being equal, one must give preference to
the interpretation of the incorrect text that requires the fewest corrections.



