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Preface

An appropriate coverage of the subjects contained in the five parts of this book
would need several monographs. We hope that the global treatment presented here
may emphasize some of their deep interactions. As far as possible we present
self-contained proofs; we have also tried to produce a book that could be used in
a graduate course.

Our thread of Ariadne is the introduction into stochastic analysis of the method-
ology used in classical analysis and differential geometry. Our geometric point of
view has obliged us to pay great attention to the foundations. On the other hand our
notation, which follows the usual conventions, will allow an experienced worker to
look directly at any section of this book, without spending time on the foundational
sections.

Each part is constructed according to the following format: a short introduction,
a detailed table of contents at the beginning of each chapter of that part and a
short note on the literature at the end of each part.

The style of writing oscillates from one part to the next between that of a
rather technical monograph in Part II to a broader survey style in Parts IV and V.

T owe a great debt to K. It5, J.R. Norris, D.W. Stroock for their careful reading
of the first draft and for their far-reaching suggestions.

Paris, January 1997 4 Paul Malliavin
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2 Part 1. Differential Calculus on Gaussian Probability Spaces

In the elementary theory of R"-valued random variables, operations on the
subclass of random variables having a C'-density relative to Lebesgue measure
are often realized through computations of ordinary differential calculus: for in-
stance, the determination of conditional laws by computing differential forms, the
realization of a change of variables by computing Jacobians. Our purpose is to
extend this methodology to more general probability spaces.

The Lebesgue measure of R" can be characterized by its invariance under
the group of translations. Given a probability space 2, the quasi-automorphism
group will be a “natural” group of transformations of £2 leaving quasi-invariant the
probability measure; this notion is quite general; it will be developed in this book
in the context of @ Gaussian probability space, which means an abstract probability
space £2 on which we have a Hilbert space H of Gaussian random variables. The
additive group of  will define the quasi-automorphism group of £2. Any unitary
isomorphism of H will then generate an automorphism of the Gaussian probability
space structure of £2. The realization of this unitary invariance as a fact built into
the construction of £2 itself is done in Chapter I. )

The quasi-automorphism group H operates on a suitable algebra of random
variables. The infinitesimal action of H will lead to the notion of H-Sobolev spaces
on §2. Chapter II will be devoted to the study of the algebra of smooth random
variables which are the random variables belonging to all those Sobolev spaces.

The Jacobian of an R-valued smooth random variable is defined in Chapter
I1I; an appropriate lower bound for this Jacobian will imply that the corresponding
law has a C*°-density relative to Lebesgue measure. This theorem will result from
an interplay between classical harmonic analysis for Sobolev spaces on R? and
elliptic estimates established in Chapter II for Sobolev spaces on £2. This interplay
will be realized by lifting differential forms by the inverse image and pushing down
by conditional expectations.



Chapter 1
Gaussian Probability Spaces

Contents: Definition of a Gaussian probability space, reducibility — Hermite poly-
nomials on R — Hermite polynomials on RN -~ Numerical model of a Gaussian
probability space — Intrinsic geometry on a Gaussian probability space — The
Omnstein-Uhlenbeck semigroup, chaos decomposition — The Cameron-Martin rep-
resentation — Abstract Wiener space.

In the 1950’s Irving Segal developed for the needs of Quantum Field Theory,
an abstract theory of integration of an abstract Hilbert space. In the 1960’s Leonard
Gross built the theory of Gaussian Borel measures on an arbitrary Banach space.
A very special case of Gross’s theory is the classical Wiener space that we shall
discuss later. Looking in this chapter for the greatest generality combined with the
easiest approach, we shall follow a route close to Segal’s approach in a version
more concrete than his original paper. This point of view is parallel to recent
papers of K. It.

One basic object of probability theory is the Boolean algebra B of measurable
events. By a theorem of Stone this Boolean algebra can be represented as the
family of subsets of a compact space K which are both closed and open. The
space K can be thought of as the Stone spectrum of B; the Stone spectrum is an
intrinsic object, but one on which we are unable to work: the compact space X is
highly non-separable. A substitute for this approach is Gelfand’s theory of Banach
algebras. We now take for a basic object the algebra of bounded random variables;
this is a Banach algebra which is isomorphic to the algebra of continuous functions
on its Gelfand spectrum. Again, the Gelfand spectrum is an intrinsically defined
compact space; the Gelfand spectrum is highly non-separable.

In order to keep separability within an intrinsic approach, we will introduce not
a single model, but a family of separable models. The family will have an intrinsic
meaning; the choice of a model in the family will lose the intrinsic character.
Intrinsic properties will then be defined as properties which are independent of
the choice of the model.

Some readers might wish to avoid the axiomatic method developed in this
chapter. They should then proceed in the following way: skip the reading of the
first seven sections and go directly to the last section where the classical abstract
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Wiener space appears as an example; this example in mind, it is possible to follow
the main lines of the whole book.

1. Axioms of Gaussian probability spaces

1.1 Definition. A Gaussian probability space (2, A, P; H, A}) is given by the
following elements

1.1.1. (22, A, P) a probability space. _

1.1.2. A closed subspace H of L*($2, A, P) such that all the random variables
belonging to H have a centered Gaussian law.

The o-field generated by those variables is denoted by Aj.
1.1.3. Another o-field A}, independent of Ay and such that

An® Ay = A.

We shall call Ay the o-field of the transverse variables or the transverse o-field.

1.2. Subspaces

Given a Gaussian probability space (2, A, P; H, A%, a subspace will be given
by

1.2.1. H' C H a closed subspace of H.

1.22. Ay, asub o-field of A such that .4 and A%, are independent. We denote
A' = Ay ® A3, and we assume

A NAL c AL

1.2.3. Example. Given a Gaussian probability space (2, A4, P, H, A};) and given
a closed vector subspace H' of H, then there exists B such that (2, A,P,H B)
is a subspace of (22, A, P, H, A}). '

Proof. Denote by V the orthogonal complement of H’' in H. Then orthogonality
in H implies independence. Therefore Ay is independent of Ay-. We take for B
the o-field generated by Ay and AL. u]

1.3. Irreducibility

1.3.1. Definition. A Gaussian probability space is irreducible if Ay = A.

1.3.2. Remark. At first sight it might appear strange to work with non-irreducible
spaces. This concept is introduced for the following reasons:
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(i) The possibility to work with a subspace (as explained in 1.2.3) which will
provide approximations by finite dimensional Gaussian spaces.

(ii) The general idea that a probability space can always be extended and that the
admissible operations have to be stable under the extension of the space.

1.3.3. Remark. We introduce the Hilbert space G = L*(2, A%, P). Then
L} (2, A, P) = L*((2, Au. P); G),

where the r.h.s. denotes an L? space of G-valued functions.

1.4. Isomorphism

Given two Gaussian spaces (£2, A, P, H) and (£2’, A', P’, H'), an isomorphism
will be given by an isometry u : L%(£2/, A, P") - L%*(R, A, P) such that
u restricted to L™ is an algebraic homomorphism and such that u(H') = H,
u(L*(2', Af, P)) = L? (2. A5, P).

Example 1. A bijective measurable map j : 2 — £’ preserving the probability
measure, the spaces H and H’, and A; and Ay, induces such an isomorphism. If
the o-fields A and A’ are “sufficiently large” in £2 and £, all the isomorphisms
are of this nature. (This is the case if £2, 2’ are separable, complete metric spaces
and if 4 and A’ contain the Borel o-fields.)

One of the purposes of this chapter is to show that the equivalence classes
under isomorphism of irreducible Gaussian probability spaces (2, A, P, H) are
classified by the dimension of H. To prepare the proof of this result, we shall
recall in the next two subsections some notation and classical results on Hermite
polynomials.

2. Hermite polynomiais on R

We consider on R the normal law

(dE) = —— ex (—E)d;
Ay~ A Y L

We consider the real Hilbert space associated to the scalar product

f VEE) Y dE) = (¥ | 0).

We denote by C, (R) the set of C!-functions with compact support. We denote by
0 the operator of differentiation:

(Bp) (&) = ¢'(§).
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Remark. In mathematical physics the operator 3 is called the annihilation operator.
2.1. Lemma. Denote by 3* the operator defined, for ¢ € C'(R), by
(3°0)(€) = —¢'(€) + Ep(&).
Then if 3¢ and 3*y € L2(y) we have
@B ly)=(p]d"y).
Remark. In mathematical physics, the operator 8* is called the creation operator.

Proof. If ¢ has compact support, this identity is obtained by integration by parts.
Set () = (1 ~ €)Y, ge(§) = q(e£).Then

(3(qe®) | V) = (ge00 | 3*y)

and when & — 0 the right hand side converges.
The same property of the left hand side will result from lim ((Bg)p | ¥) =0,
which follows from the estimate

1(3ge)e | ¥)I < ellollz Nyl 2.

2.2. Definition of the Hermite polynomials. We define the sequence
Hy(&) = 1
H, = 3'H,,_! = (3*)"1.

By induction on n we see that H, is a polynomial of degree n and that its term
of highest degree is £”.

2.3. Lemma.
99* —3*a = 1.

Proof. A straightforward computation establishes this commutation relation, which
is basic in quantum mechanics. 0

2.4. Lemma. Denote by u a probability measure on R" such that there exists ¢ > 0
Jor which

/ eC'-"Iu(dy) < +00
mn

then the polynomials in the coordinate Junctions are dense in LP(j1) for p €
[1, +00).
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Proof. Denote by V the L?-closure of the polynomials. If V # L* we can find
u € LY(u), u # 0, such that u is orthogonal to V. Consider the formal integral

() =/ e u(y)u(dy).
Rn

la(@ +ir)| < f e u(y)udy) < e |, Nl < +o0

which implies the convergence if 7| < £.
Therefore i is the restriction to R” of a function holomorphic in the tube
[a +it; o eR", 1] < -f,—} Furthermore, by the orthogonality to V

] "
[57'"—"7‘] 0 =0.

By analyticity this implies i = 0. By the Fourier inversion formula therefore,
udp =0 so u = 0 a.e. u, which is a contradiction. ]

2.5. Theorem

25.1. 0H, =n H,_,.
2.5.2. (n!)~'2H, is an orthonormal basis of L(y).
2.5.3. Define L = 38*9, then CLH, =n H,.

2.54. Let f € L% (y). Assume that all derivatives of f belong to L2 (y), then the
L2-expansion of f can be written

+oc

f.-_-Z%E(B"f)H,,

a=0 """

where E(u) denotes (u | 1).
2.55.

_/;2 Hy(§ cosf + nsin®)H,(£)y (dE)y (dn) = nl(cos9)"8?

(where 8f =0if p#n and 57 = 1).
2.5.6.

AZ +0 p
A — — | = —
exp( X == ) g pr Hy(x),

this convergence being uniform on compact sets in (X, x). This identity is called
the generating function identity.
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Proof.

(25.1) Forn = 1, Hy = &, dH; = 1 = Hy; we proceed by induction on n.
Assume that (i) is true for n < p. Then

0H, = 83'Hp,_, =28"8H,_+ H,_;, nowby 1.2.2
= 3*([7 - I)Hp_2+ H, -1 = pHp_l.

(2.5.2)
(Ho1(8%) 1) = (a°H, 1)
If £ > s as H; is a polynomial of degree s, we have 3°H; = 0. If £ = s, then

9"H; = s!. This proves that { ﬁmﬂs} is an orthonormal system. Therefore

{H,} are linearly independent. T}iey generate by linear combination the vector
space of polynomials which is dense in L? by 2.4. o

(2.5.3)
8*0H, = 8*nH,_, =nd*H,., =nH,

o
(2.5.4) By (ii) every f € L*(y) has the following L? expansion:
=Y ol with o =-(f | Hy).
As f and f' belong to L?(y) we have by 2.1
(f | Hp) = (f | 8*Hyy) = (3f | Hami)
and so by induction
=@ I H) = (" 18 ) = (37 f 1 1)
O

(2.5.5) We remark that y ® y is the normal law yg: on R2, therefore it is rotation
invariant. We denote by 3, the derivation operator defined on smooth functions
on R? by
af . Bf
) = cosf — 6—.
(@ f) =co T + sin a7
We denote by 3; the adjoint of 3 in L2 (yg2).



