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Preface

Although Maxwell's equations were formulated about one hundred years ago,
the subject of electromagnetism has not remained static. Advanced under-
graduate students in science, to whom we are directing our attention, today
approach the subject with a qualitative understanding of atomic phenomena.
At the same time, they have acquired a good background in mathematics and
for the first time are in a position to solve some of the important problems of
classical physics. The present volume evolved from the teaching of courses in
electricity and magnetism to physics majors at Case Institute of Technology
and at Dartmouth College. A course in electromagnetism is ideally suited to
a development of the concepts of vector analysis, partial differential equations,
and boundary-value problems. The sections involving these techniques are
written in such a way that little previous knowledge of the subject is required.

We believe that building up electricity and magnetism from the basic
experimental laws is the correct approach at the intermediate level, and we
have followed this approach through a rigorous exposition of the fundamentals.
We have also been careful to include a number of appropriate examples to
bridge the gap between the formal development of the subject and the prob-
lems. A full understanding of the electric and magnetic fields inside matter can
be obtained only after the atomic nature of materials is appreciated. Hence we
have used elementary atomic concepts freely in the development of macro-
scopic theory.

We prefer to discuss the static electric field in a material medium imme-
diately after the vacuum electric field, and we discuss the magnetostatic field
similarly. The reader may, however, study both vacuum cases together before

.considering either electric or magnetic fields in matter. by postponing Chapters

4, 5, 6, 7 (except Sections 7.1 and 7.2). 9, and 10 until after reading Chapter
8 or even Chapter 11, The macroscopic electromagnetic behavior of dielectrics.
conductors, magnetic materials, plasmas, and superconductors is treated in
'separate chapters (Chapters 4, 7. 9. 14, and 15, respectively). A simple dis-
cussion of the microscopic theory of these classes of matter (except supercon-
ductors) is also provided (in Chapters 5. 7. 10, and 14).

The third edition of the ‘book is changed principally by the addition of
more material on electromagnetic waves. The two old chapters on Maxwell’s
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equations have been expanded into five chapters. The book is thus adaptable
either to a one-semester course or to a two-semester course in which the
second semester emphasizes propagation arnd generation of radiation.

Much of modern physics (and engineering) involves time-dependent elec-
tromagnetic fields in which Maxwell’s displacement current plays a crucial
role. Chapters 16 through 20 develop the application to waves—especially the
connection with optics, which is the frequency range that is now succeeding
microwaves in technological interest. Chapters 16 and 17 extend the old treat-
ment of the wave equations, introducing the idea of gauge transformations.
The notions of complex dielectric function and refractive index are empha-
sized, with resulting conceptual clarity and simplification of formulas. Chapter
I8 expands the treatment of boundary-value problems, to include examples of
interest in optical filters and waveguides. Chapter 19 gives the classical micro-
scopic theory of transverse wave propagation in matter (dielectrics, metals,
plasmas); it is an extension of Chapters 5 and 7 to time-dependent fields. It
also includes a simple discussion of the Kramers-Kronig dispersion relations
for a linear response function. Chapter 20, on the generation of radiation by
antennas and accelerated charges, includes new material on induction fields,
radiation damping, and Thomson scattering.

The material in the rest of the book has been slightly rearranged, so that
the discussion of static fields and steady currents is completed before the
introduction of Faraday’s law of induction, in Chapter 11, followed by its
application to slowly varying currents in a-c circuits, plasmas, and supercon-
ductors in Chapters 13, 14, and 15. The relativistic formulation of electro-
magnetism has been put at the end, although it could be read at any point after
Chapter 16. Some relativistic aspects are anticipated in new treatments of the -
magnetic force (Chapter 8) and Faraday’s law (Chapter 11).

Other changes from earlier editions include the introduction of the Dirac
delta function in Chapter 2 and its use to simplify several later derivations.
Orthogonal transformations are moved to an Appendix, which can be read in
conjunction with Chapter | if desired. The del-operator notation is -used for
vector differentiation. All tables of data and references to other books have
been updated, and SI upits and notation are used systematically throughout.
(Reference is also made, however, to the Gaussian units, since they are widely
used in the current physics literature.) A summary section at the end of each
chapter identifies key ideas and formulas, and about one hundred and thirty
additional problems extend and apply the concepts.

As an aid to the reader, the more difficuit problems are labeled with an
asterisk. Sections and chapters of the text that are starred are not essential to
s further development and may be omitted in an abbreviated study.

Dearborn, Michigan J.R.
Columbus, Ohio - ‘ F. I
Hanover, New Hampshire R. W.
January 1979
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CHAPTER 1 Vector Analysis

In the study of electricity and magnetism a great saving in complexity of notation
may be accomplished by using the notation of vector analysis. In providing this
valuable shorthand, vector analysis also brings to the forefront the physical ideas
involved in equations. It is the purpose of this chapter to give a brief but self-
contained exposition of basic vector analysis and to provide the rather utilitarian
knowledge of the field which is required for a treatment of electricity and
magnetism. Those already familiar with vector analysis will find it a useful review
and an introduction to the notation of the text.

1-1 DEFINITIONS

In the study of elementary physics. several kinds of quantities have been en-
countered; in particular, the division into vectors and scalars has been made. For
our purposes it will be sufficient to define a scalar as follows: '

A scalar is a quantity that is completely characterized by its magnitude.

Examples of scalars are numerous: mass, time, volume, etc. A simple extension of
the idea of a scalar is a scalar field, i.e., a function of position that is completely
specified by its magnitude at all points in space. -

A vector may be defined as follows:

A vector is a quantity that is completely characterized by its magnitude and
direction.

As examples of vectors we cite position from a fixed origin, velocity, acceleration,
force, etc. The generalization to a vector field gives a function of position that is
completely specified by its magnitude and direction at all points in space.

These definitions may be refined and extended; in fact, in Appendix I they are
replaced by more subtle definitions in terms of transformation properties. In
addition, more complicated kinds of quantities, such as tensors, are sometimes
encountered. Scalars and vectors will, however, largely suffice for our purposes
until Chapter 22.
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1-2 VECTOR ALGEBRA

Since the algebra of scalars is familiar to the reader, this algebra will be used to
develop vector algebra. In order to proceed with this development it is convenient
to have a representation of vectors, for which purpose we introduce a three-
dimensional Cartesian coordinate system. This three-dimensional system will be
denoted by the three variables x, y, z or, when it is more convenient, x,, X5, X3.
With respect to this coordinate system a vector is specified by its x-, y-, and
z-components. Thus a vector* V is specified by its components V,, V,, V,, where
Ve=|V| cos ay, ¥V, = | V| cos az, ¥, = | V| cos a3, the o’s being the angles be-
tween V and appropriate coordinate axes. The scalar |V| =/ Vé V24 Vis
the magnitude of the vector V, or its length. In the case of vector fields, each of the
components is to be regarded as a function of x, y, and z. [t should be emphasized
at this point that we introduce a representation of the vectors with respect to a
Cartesian coordinate system only for simplicity and ease of understanding; all of
the definitions and operations are, in fact, independent of any special choice of
coordinates.

The sum of two vectors is defined as the vector whose components are the
sums of the corresponding components of the original vectors. Thus if C is the
sum of A and B, we write

C=A+B (1-1)
and
C.=A,+8B,, C,=4,+8B, C,=A,+B,. (1-2)

This definition of the vector sum is completely equivalent to the familiar parallelo-
gram rule for vector addition.

Vector subtraction is defined in terms of the negative of a vector, which is the
vector whose components are the negatives of the corresponding components of
the original vector. Thus if A is a vector, —A is defined by

(—A)=~4,, (-A),=-4, (-A),=-4, (1-3)

The operation of subtraction is then defined as the addition of the negative. This is
written '

A-B=A+(-B) (1-4)
Since the addition of real numbers is associative and coinmutative, it follows

that vector addition (and subtraction) is also associative and commutative. In
vector notation this appears as

A+(B+C)=(A+B)+C=(A+C)+B=A+B+C (1-5)

In other words, the parentheses are not needed, as indicated by the last form.
Proceeding now to the process of multiplication, we note that the simplest

product is a scalar times a vector. This operation results in a vector each compo-

nent of which is the scalar times the corresponding component of the original

* Vector quantities will be denoted by boldface symbols.
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vector. If ¢ is a scalar and A a vector, the product cA is a vector, B = cA, defined
by
B,=cA,, B,=cA,, B,=cA,. (1-6)

It is clear that if A is a vector field and ¢ a scalar field then B is a new vector field
which is not necessarily a constant multiple of the ongnal field

If, now, two vectors are to be multiplied, there are two possibilities, known as
the vector and scalar products. Considering first the scalar product, we note that
this name derives from the scalar nature of the product, although the alternative
names, inner product and dot product, are sometimes used. The definition of the
scalar product, written A - B, is

A B=A.B, +A,B,+ A,B, (1-7)

This definition is equivalent to another, and perhaps more familiar, definition, i.e.,
as the product of the magnitudes of the original vectors times the cosine of the
angle between these vectors. If A and B are perpendicular to each other,

A-B=0
The scalar product is commutative. The length of A is

IAI = /A A

The vector product of two vectors is a vector, which accounts for the name.
Alternative names are outer and cross product. The vector product is written
A x B; if C is the vector product of A and B, then C= A x B, or

C.=A,B,—A.B, C,=A,B —AB, C,=AB,—AB, (1-8)

It is important to note that the cross product depends on the order of the factors:
interchanging the order introduces a minus sign:

BxA=-AxB
Consequently,
AxA=0

This definition is equivalent to the following: the vector product is the product of
the magnitudes times the sine of the angle between the original vectors, with the
direction given by a right-hand screw rule.*

The vector product may be easily remembered in terms of a determunant. Ifi, j,
and k are unit vectors, 1., vectors of unit magnitude, in the x-, y-, and z-directions,
respectively, then

i §J k
AxB= |4, 4, 4,|. (1-9)
B, B, B,

* Let A be rotated into B through the smallest posstble angle A nght-hand screw rotated in
this manner will advance 1n a direction perpendicular to both A and B; this direction 1s the
direction of A x B.
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If this determinant is evaluated by the usual rules, the result is precisely our
definition of the cross product.

The algebraic operations discussed above may be combined in many ways.
Most of the results so obtamned are obvious; however, there are two triple prod-
ucts of sufficient importance to merit explicit mention. The triple scalar product
D= A - B x C 1s easily found to be given by the determinant

A4, A, A,
B, B, B,
c, C, C,

D=A-BxC= =-B-AxC. (1-10)

This product is unchanged by an exchange of dot and cross or by a cyclic permu-
tation of the three vectors, parentheses are not needed, since the cross product of a
scalar and a vector 1s undefined. The other interesting triple product is the triple
vector product D = A x (B x C). By a repeated application of the definition of
the cross product, Eq. (1-8), we find

D=Ax(BxC)=B(A-C)-C(A-B), (1-11)

which 1s frequently known as the back cab rule. It should be noted that in the cross
product the parentheses are vital; without them the product is not well defined.

At this point one might well inquire as to the possibulity of vector division.
Division of a vector by a scalar can, of course, be defined as multiplication by the
reciprocal of the scalar. Division of a vector by another vector, however, is pos-
sible only if the two vectors are parallel. On the other hand, it is possible to write
general solutions to vector equations and so accomplish something closely akin to
division. Consider the equation

c=A-X, (1-12)

where ¢ 15 a known scalar, A a known vector, and X an unknown vector A general
solution to this equation 1s

cA
A-A

where B 1s a vector of arbitrary magnitude that is perpendicular to A, that is,
A - B = 0. What we have done 1s very nearly to divide ¢ by A; more correctly, we
have found the general form of the vector X that satisfies Eq. (1-12). There is no
unique solution, and this fact accounts for the vector B. In the same fashion we
may consider the vector equation

X=

+ B, (1-13)

C=AxX (1-14)
where A and C are known vectors and X 1s an unknown vector The general
solution of this equation 1s

CxA

X=2a

+ kA (1-15)



if C - A = 0, where & is an arbitrary scalar. If C - A # 0, no solution exists. This
again is very nearly the quotient of C by A; the scalar k takes account of the
nonuniqueness of the process. If X is required to satisfy both (1-12) and (1-14),
then the result is unique (if 1t exists) and given by

CxA cA

X~ *ix (1-16)

1-3 GRADIENT

The extensions of the ideas introduced above to differentiation and integration,
i.e., vector calculus, will now be considered. The simplest of these is the relation of
a particular vector field to the derivatives of a scalar field. It is convenient first to
introduce the idea of the directional derivative of a function of several variables.
This 1s just the rate of change of the function in a specified direction. The direc-
tional derivative of a scalar function ¢ is usually denoted by de/ds; it must be
understood that ds represents an infinitesimal displacement in the direction being
considered, and that ds is the scalar magnitude of ds. If ds has the components dx,
dy, dz, then -
dp . ox+Ax,y+ Ay, z+ Az) - ¢pfx, y, 2)
— = lim

ds As=0 As

_ O dx +6<pdy +a¢p dz

“dxds dyds 0z ds
In order to clarify the idea of a directional derivative, consider a scalar func-
tion of two variables. Thus, ¢(x, y) represents a two-dimensional scalar field. We
may plot ¢ as a function of x and y as is done in Fig. 1-1 for the function
@(x, y) = x? + y*. The directional derivative at the point x,, yo depends on the

direction. If we choose the direction corresponding to dy/dx = —x,/y,, then we
find

i‘e =aﬁ(p§ atpdy_[ 0—20x0 dx=0. (1"173.)

ds|.,, Oxds odyds Vol ds
Alternatively, if we choose dy/dx = yg /x,, we find

2
Yo X0
=|2x +2—) /—————=2 X5 + ¥5, 1-17b
x0,¥0 ( 0 xO xl%"'y(z) 0 yo ( )

do

ds
since ds = /{dx)? + (dy)?. As a third possibility choose dy/dx = a; then
do 2y-1/2
— = (2xg + 2ayo )1 + a®)~ 2, (1-17¢)
ds X0,50

If this result is differentiated with respect to « and the derivative set equal to zero,
then the value of a for which the derivative is a maximum or minimum is found.
When we perform these operations, we obtain « = y, /x,, which simply means
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¢ Figure 1-1 The function ¢(x, y) = x* + y?
plotted against x and y in a three-
dimensional graph.

]

that the direction of maximum rate of change of the function ¢ = x? + y? is the
radial direction If the direction is radially outward then the maximum 1s the
maximum rate of increase; 1f it is radially inward it is a maximum rate of decrease
or mimimum rate of increase. In the direction specified by dy/dx = — x4 /v,
the rate of change of x? + y? 1s zero. This direction 1s tangent to the circle
x* 4+ y* = x} + y5. Clearly, on this curve, ¢ = x + y? does not change. The di-
rection in which de/ds vanishes gives the direction of the curve ¢ = constant
through the point being considered These hines, which are circles for the function
x? + y2, are completely analogous to the familiar contour lines or nes of con-
stant altitude which appear on topographic maps. Figure 1-2 shows the function
@ = x* + y? replotted as a contour map.

¥ Figure 1-2 The function ¢(x, y) of Fig. 1-1
expressed as a contour map in two
dimensions




